

PyQuantLab

BACKTESTER v3.0.2
Strategies Manual

www.pyquantlab.com
May 2025

Table of Contents 1

Table of Contents

IntroducƟon: Strategies in the Backtester App ... 2

Chapter 1: The Strategy Class Structure ... 5

Chapter 2: Working with Data Inside a Strategy ... 12

Chapter 3: Using Indicators in Your Strategy .. 18

Chapter 4: Order ExecuƟon... 26

Chapter 5: PosiƟon Sizing and Management .. 33

Chapter 6: Receiving Feedback: NoƟficaƟons .. 39

Chapter 7: Advanced Strategy Features .. 45

Chapter 8: Strategy Examples for Backtester .. 54

Appendix ... 68

IntroducƟon: Strategies in the Backtester App 2

IntroducƟon: Strategies in the Backtester App

0.1. Welcome to Backtester

Welcome to Backtester v3.0.2! This application is designed to help you develop, test, and refine
your trading strategies using historical market data before deploying them in live markets.

As you can see from the main interface (picture above), Backtester allows you to:

• Select your desired financial instrument (like BTC-USD).
• Define the historical date range for your backtest.
• Set your initial investment amount and commission rate.
• Choose, manage, and run different trading strategies.
• View and adjust strategy-specific parameters.
• Visualize the results through interactive plots and review detailed trade logs.
• See a summary of the backtest performance, including the total return.

This manual will guide you through the process of creating and managing the core logic of your
trading ideas: the Strategies.

0.2. Understanding Strategies (Based on backtrader)

IntroducƟon: Strategies in the Backtester App 3

At the heart of Backtester lies the concept of a Strategy. A Strategy is essentially a set of rules,
coded in Python, that determines when to buy, sell, or hold an asset based on market data and
technical indicators.

Backtester leverages the powerful and flexible open-source backtrader framework. This
means that the strategies you create will follow backtrader’s conventions and structure. If
you have prior experience with backtrader, you’ll feel right at home. If not, don’t worry – this
manual will cover everything you need to know to build strategies from scratch within the
Backtester environment.

In essence, your strategy code will analyze the incoming price data (Open, High, Low, Close,
Volume) bar by bar, calculate indicator values, check your custom conditions, and issue trading
orders accordingly.

0.3. Adding, Modifying, and Removing Strategies in the App

Backtester provides a straightforward interface for managing your strategy library, visible on
the left-hand panel:

• Select Strategy: This dropdown menu lists all the strategies currently available in the
app. You choose the one you want to backtest here.

• Parameters: Below the strategy selection, you’ll see the adjustable parameters specific
to the currently selected strategy (like tenkan, kijun, senkou, etc. for the
IchimokuCloudBreakoutStrategy shown).

• Add New Strategy: Click this button to create a new, blank strategy file where you can
start coding your rules.

• Remove Strategy: Click this button and select a strategy to delete it from your library.
• Modify Strategy: Select an existing strategy and click this button to open its code,

allowing you to view and edit the underlying Python logic.

This system allows you to build up a collection of different trading ideas and easily switch
between them for testing.

0.4. Leveraging backtrader’s Functionality

When you write or modify strategies in Backtester, you are working within the backtrader
ecosystem. This gives you access to its rich features for handling data, executing orders,
managing positions, and analyzing results.

Crucially, backtrader includes a comprehensive set of built-in technical indicators
(bt.indicators.*) and also provides seamless wrappers for most functions in the popular
TA-Lib library (bt.talib.*). This means you have a vast array of technical analysis tools
readily available directly within the framework, which generally simplifies development and
helps avoid compatibility issues.

The following chapters will guide you through the structure of a backtrader strategy, how to
work with data, how to use the integrated indicators (both backtrader’s own and its TA-Lib

IntroducƟon: Strategies in the Backtester App 4

wrappers), how to execute trades, and how to utilize other advanced features available within
the Backtester app.

Chapter 1: The Strategy Class Structure 5

Chapter 1: The Strategy Class Structure

When you “Add New Strategy” or “Modify Strategy” in the Backtester app, you are working
with a Python file containing a class definition. This class holds all the logic for your trading
strategy. It builds upon the backtrader framework, providing a structured way to interact
with market data, indicators, and order execution.

1.1. Inheriting from bt.Strategy

Every strategy you create in Backtester must be a Python class that inherits from
backtrader’s base Strategy class. This is fundamental, as it gives your class all the built-
in capabilities and expected methods of the backtrader engine.

At the very minimum, your strategy file will start like this:

Python

Import the backtrader library
import backtrader as bt
Import the TA-Lib library (if you plan to use it)
import talib # Or use bt.talib wrappers

Define your strategy class, inheriting from bt.Strategy
class MyStrategy(bt.Strategy):
 # --- Strategy parameters ---
 # params = (
 # ('my_param', 20),
 #)

 def __init__(self):
 # --- Initialization code ---
 print("Strategy Initialized")
 # Keep a reference to the "close" line in the data[0] dataseri
es
 self.dataclose = self.datas[0].close

 def next(self):
 # --- Main logic per bar ---
 print(f"Processing bar with closing price: {self.dataclose[0]}
")
 # Example: Simple buy logic
 # if self.dataclose[0] > self.dataclose[-1]: # If close is hig
her than previous close
 # if not self.position: # Check if not already in the mark
et
 # self.buy()

 # --- Optional methods ---

Chapter 1: The Strategy Class Structure 6

 # def start(self):
 # print("Strategy Started")

 # def stop(self):
 # print("Strategy Stopped")

 # def log(self, txt, dt=None):
 # ''' Logging function for this strategy'''
 # dt = dt or self.datas[0].datetime.date(0)
 # print(f'{dt.isoformat()}, {txt}')

 # def notify_order(self, order):
 # # Handle order notifications
 # pass

 # def notify_trade(self, trade):
 # # Handle trade notifications
 # pass

• We import the backtrader library, usually aliased as bt.
• We define a class (e.g., MyStrategy) that includes (bt.Strategy) in its definition,

signifying inheritance.
• Inside the class, we define specific methods (__init__, next, etc.) that

backtrader expects and calls during the backtest.

1.2. The Initialization Method (__init__)

The __init__(self) method is a standard Python constructor. In the context of a
backtrader strategy, it’s called once when the strategy is first loaded by the Backtester
engine, before any historical data is processed.

Its primary purposes are:

1. Accessing Data Feeds: Getting references to the price/volume data.
2. Defining Parameters: Setting up adjustable variables for the strategy.
3. Instantiating Indicators: Creating the technical indicators you’ll use.
4. Initializing State Variables: Setting up any other variables your strategy needs to

track its internal state.

Let’s break these down:

1.2.1. Accessing Data Feeds (self.datas, self.data, self.dataX, self.dnames)

When Backtester runs your strategy, it feeds it the historical data you selected (e.g., BTC-
USD daily data). Inside __init__, you can access this data:

• self.datas: A list-like object containing all data feeds passed to the engine. For
most single-instrument strategies in Backtester, this will contain just one item.

Chapter 1: The Strategy Class Structure 7

• self.data or self.datas[0]: A convenient alias for the first data feed
(self.datas[0]). This is the most common way to access your primary instrument
data.

• self.dataX (e.g., self.data1, self.data2): Aliases for subsequent data feeds
(self.datas[1], self.datas[2]), used if you load multiple data sources (an
advanced topic).

• Data Lines: Each data feed contains several “lines” representing the Open, High,
Low, Close, Volume, etc. You typically store references to the lines you need
frequently.

Python

 def __init__(self):
 # Get a reference to the primary data feed
 self.my_data = self.datas[0] # Or simply use self.data

 # Get references to specific lines within the primary data fee
d
 self.dataclose = self.my_data.close
 self.dataopen = self.my_data.open
 self.datavolume = self.my_data.volume

Storing these references (like self.dataclose) makes accessing the data values later in
the next method cleaner.

1.2.2. Defining Strategy Parameters (params)

Strategies often have parameters you might want to tweak without changing the core code
(e.g., the period for a moving average). backtrader handles this through a special class
attribute called params.

You define params as a tuple of tuples (or a dictionary). Each inner tuple contains the
parameter name (string) and its default value.

Python

class MyStrategyWithParams(bt.Strategy):
 params = (
 ('sma_period', 20), # Parameter for Simple Moving Average per
iod
 ('rsi_period', 14), # Parameter for RSI period
 ('print_log', True), # A boolean parameter
)

 def __init__(self):
 # Access parameters using self.params or self.p
 self.sma = bt.indicators.SimpleMovingAverage(
 self.datas[0], period=self.params.sma_period)

Chapter 1: The Strategy Class Structure 8

 self.rsi = bt.indicators.RelativeStrengthIndex(
 period=self.p.rsi_period) # self.p is a shortcut for self.
params

 print(f"SMA Period: {self.p.sma_period}, RSI Period: {self.p.r
si_period}")

 def next(self):
 if self.p.print_log: # Use the boolean parameter
 self.log(f"Close: {self.data.close[0]}")

These parameters are the ones displayed and potentially adjustable in the “Parameters”
section of the Backtester app interface for the selected strategy.

1.2.3. Instantiating Indicators (See Part 3 for TA-Lib)

Technical indicators (backtrader built-in, TA-Lib, or custom ones) need to be created
before they can be used. The standard place to do this is within the __init__ method. You
create an instance of the indicator and assign it to an attribute of self.

Python

 def __init__(self):
 self.dataclose = self.datas[0].close

 # Instantiate a Simple Moving Average indicator
 self.sma50 = bt.indicators.SimpleMovingAverage(
 self.datas[0], # Pass the data feed
 period=50 # Pass indicator-specific parameters
)

 # Instantiate another indicator on the first one (SMA of SMA)
 self.sma_of_sma = bt.indicators.SimpleMovingAverage(
 self.sma50, # Pass the previous indicator's output line
 period=10
)

 # TA-Lib indicators are also instantiated here (more details i
n Part 3)
 # self.rsi = bt.talib.RSI(self.data, period=14)

By creating them in __init__, the indicators are ready to calculate their values as the
backtest progresses through the historical data.

1.2.4. Initializing State Variables

Chapter 1: The Strategy Class Structure 9

You often need variables to keep track of the strategy’s state across different bars. For
example, you might need to store a reference to a pending order or track whether a specific
condition was met on the previous bar. These should also be initialized in __init__.

Python

 def __init__(self):
 self.order_pending = None # Variable to hold a reference to an
order
 self.consecutive_up_days = 0 # Variable to count something
 self.entry_price = 0.0 # Variable to store entry price

Initializing them ensures they have a known starting value before the next method is
called for the first time.

1.3. The Strategy Lifecycle Methods

backtrader calls specific methods on your strategy object at different points during the
backtest. Understanding this lifecycle is key:

1.3.1. start(): One-time setup

• Called once at the very beginning of the run() process, even before prenext or
next.

• Useful for any setup that doesn’t depend on the data or indicator minimum periods.
Often left unimplemented if __init__ handles all setup.

1.3.2. prenext(): Handling the “minimum period” phase

• Called for each bar while backtrader is waiting for enough data to accumulate to
satisfy the longest “minimum period” required by any indicator in your strategy
(e.g., a 20-period SMA needs 20 bars before it can calculate its first value).

• Useful if you need to perform actions even before your indicators are ready, but
often not needed for typical strategies. If not defined, nothing happens during this
phase.

1.3.3. nextstart(): The bridge to active trading logic

• Called exactly once on the bar where all indicators have met their minimum period
requirements and can start producing valid output.

• Its default behavior is to simply call the next() method.
• You can override nextstart() if you need to perform a specific one-time action

precisely when your indicators become “live”.

1.3.4. next(): The Heartbeat - Processing Each Bar/Tick

• This is the most important method for most strategies.

Chapter 1: The Strategy Class Structure 10

• Called for every bar of data after the minimum period has been reached (either
directly by backtrader if nextstart is not overridden, or via the default
nextstart).

• This is where your core logic resides:
– Check indicator values (e.g., self.sma50[0]).
– Compare prices (e.g., self.dataclose[0] > self.sma50[0]).
– Check if you have an open position (self.position).
– Make trading decisions (self.buy(), self.sell()).

1.3.5. stop(): Final actions and cleanup

• Called once at the very end of the backtest, after the last bar has been processed by
next().

• Useful for:
– Final calculations or logging.
– Accessing results from Analyzers (tools for calculating performance metrics

like Sharpe Ratio, Drawdown, etc.).
– Cleaning up any resources if necessary.

1.4. Logging Made Easy: The log() Method

While you can use simple print() statements, defining a dedicated log() method within
your strategy class is highly recommended for consistent and informative output. This
helps populate the “Trades Log” tab in Backtester.

A common pattern looks like this:

Python

 def log(self, txt, dt=None):
 ''' Logging function for this strategy'''
 # Use the datetime from the current bar if no specific date is
provided
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()}, {txt}')

 def next(self):
 # Example usage within next()
 self.log(f'Close Price: {self.dataclose[0]:.2f}')

 if self.sma50[0] > self.dataclose[0]:
 self.log('SMA50 is above Close')

 # You would also call self.log() inside notify_order and notif
y_trade

Chapter 1: The Strategy Class Structure 11

This ensures all your strategy’s output includes a timestamp and follows a standard format,
making it much easier to understand the sequence of events during the backtest.

Chapter 2: Working with Data Inside a Strategy 12

Chapter 2: Working with Data Inside a Strategy

Once your strategy’s __init__ method has run, the Backtester engine starts feeding it
historical data, bar by bar. Your next() method (and potentially prenext/nextstart)
needs to access the price, volume, and time information for each bar to make decisions.

2.1. Accessing OHLCV and Other Lines (self.data.close, self.data.open, etc.)

As established in Section 1.2.1, you typically access the primary data feed via self.data
(which is an alias for self.datas[0]). This data feed object contains several attributes,
known as “lines”, which represent the different data points available for each bar.

The standard lines available on most datasets (like the ones from Yahoo Finance or typical
broker APIs) are:

• self.data.open: The opening price of the bar.
• self.data.high: The highest price reached during the bar.
• self.data.low: The lowest price reached during the bar.
• self.data.close: The closing price of the bar.
• self.data.volume: The volume traded during the bar.
• self.data.openinterest: Open interest information (often 0 or unavailable for

many data sources, especially for non-futures).
• self.data.datetime: Information about the date and time of the bar (see Section

2.4).

You can access the entire series of values for any of these lines using these attributes. For
example, self.data.close represents the sequence of all closing prices for the duration
of the backtest. However, you usually work with specific values from these lines within
your next() method using indexing.

Python

import backtrader as bt

class DataAccessDemo(bt.Strategy):
 def __init__(self):
 # Store references for convenience (optional, but good practic
e)
 self.open = self.data.open
 self.high = self.data.high
 self.low = self.data.low
 self.close = self.data.close
 self.volume = self.data.volume
 print("Data references stored in __init__")

 def next(self):
 # Access specific values using indexing (see section 2.3)

Chapter 2: Working with Data Inside a Strategy 13

 current_open = self.open[0]
 current_high = self.high[0]
 current_low = self.low[0]
 current_close = self.close[0]
 current_volume = self.volume[0]

 print(f"Bar processed - O:{current_open}, H:{current_high}, L:
{current_low}, C:{current_close}, V:{current_volume}")

2.2. Understanding the “Lines” Concept

In backtrader, a time-ordered sequence of data points (like closing prices, indicator
values, or even results of calculations) is abstracted into a “Lines” object.

• Data Feeds are Lines Objects: self.data itself is a lines object, containing
multiple individual lines (open, high, low, close, etc.).

• Indicators are Lines Objects: When you create an indicator (e.g., self.sma =
bt.indicators.SimpleMovingAverage(...)), the indicator itself (self.sma) is
a lines object, and its output(s) (e.g., the moving average value) are also lines.

• Operations Create Lines Objects: Performing arithmetic or logical operations
between lines objects often results in a new lines object (e.g., diff =
self.data.close - self.data.open).

This “lines” concept is fundamental because it allows backtrader to automatically
synchronize all calculations. When the engine moves to the next bar, it ensures that all lines
objects (data, indicators, calculations) advance together, making their current values
accessible via the [0] index.

2.3. The Indexing Approach ([0] for current, [-1] for previous)

This is the most critical concept for working with data inside the next() method. Since
next() is called iteratively for each bar, you need a way to refer to the values for the
current bar being processed and potentially previous bars. backtrader uses Python’s
indexing syntax on its lines objects for this:

• line[0]: Accesses the value of the line for the current bar being processed in
next().

• line[-1]: Accesses the value of the line for the previous bar.
• line[-2]: Accesses the value from two bars ago.
• And so on…

This relative indexing is powerful because your logic doesn’t need to know the absolute bar
number (e.g., bar #537). You only need to define relationships between the current bar and
recent past bars.

Python

Chapter 2: Working with Data Inside a Strategy 14

import backtrader as bt

class IndexingDemo(bt.Strategy):
 params = (('print_log', True),)

 def __init__(self):
 self.close = self.data.close
 self.sma = bt.indicators.SimpleMovingAverage(self.data, period
=20)

 def log(self, txt, dt=None):
 if self.p.print_log:
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()}, {txt}')

 def next(self):
 self.log(f'Current Close: {self.close[0]:.2f}, Previous Close:
{self.close[-1]:.2f}')
 self.log(f'Current SMA: {self.sma[0]:.2f}, Previous SMA: {self
.sma[-1]:.2f}')

 # --- Example Logic using indexing ---

 # Condition 1: Did the price close higher than it opened on th
e current bar?
 if self.close[0] > self.data.open[0]:
 self.log('Closed higher than Open today.')

 # Condition 2: Is the current close above the current SMA valu
e?
 if self.close[0] > self.sma[0]:
 self.log('Close is above SMA(20).')

 # Condition 3: Did the close cross above the SMA *on this bar*
?
 # Check if previous close was below previous SMA AND current c
lose is above current SMA
 if self.close[-1] < self.sma[-1] and self.close[0] > self.sma[
0]:
 self.log('*** CROSSOVER DETECTED: Close crossed above SMA
***')
 # self.buy() # Place buy order here

 # Condition 4: Has the price closed up for 3 consecutive bars?
 if self.close[0] > self.close[-1] and \
 self.close[-1] > self.close[-2] and \

Chapter 2: Working with Data Inside a Strategy 15

 self.close[-2] > self.close[-3]:
 self.log('Price closed up for 3 consecutive bars.')

Important: Using positive indices like line[1] is generally not recommended within
next(), as it implies looking into the future, which leads to unrealistic backtest results
(look-ahead bias). Always use [0] for the current bar and negative indices for past bars.

2.4. Working with Datetime (self.data.datetime)

Each bar is associated with a specific date and time. The datetime line provides access to
this information.

• self.data.datetime: Represents the sequence of timestamps for all bars.
• self.data.datetime[0]: Within next(), this gives the timestamp for the

current bar. The exact value depends on the data’s timeframe (e.g., for daily data, it
might represent the date; for minute data, the date and time at the end of that
minute). backtrader internally converts this to a float representation for
processing, but provides methods to get standard Python objects.

Common ways to use the datetime object for the current bar [0]:

Python

 def next(self):
 # Get the raw float representation (rarely needed directly)
 # raw_dt_float = self.data.datetime[0]

 # Get a Python date object (useful for daily data)
 current_date = self.data.datetime.date(0)

 # Get a Python time object (useful for intraday data)
 current_time = self.data.datetime.time(0)

 # Get a Python datetime object
 current_datetime = self.data.datetime.datetime(0)

 # Get parts of the date/time
 current_year = current_datetime.year
 current_month = current_datetime.month
 current_day = current_datetime.day
 current_weekday = current_datetime.weekday() # Monday is 0, Su
nday is 6
 current_hour = current_datetime.hour # For intraday data

 # Example logging
 if current_weekday == 4: # If it's Friday (weekday index 4)
 self.log(f"Processing bar for Friday {current_date.isofor
mat()}")

Chapter 2: Working with Data Inside a Strategy 16

 self.log(f"Current Datetime: {current_datetime}")

The log method example in Section 1.4 demonstrated using
self.datas[0].datetime.date(0) to automatically timestamp log messages.

2.5. Handling Multiple Data Feeds

While many strategies focus on a single instrument, Backtester (via backtrader) supports
adding multiple data feeds to your analysis. This could be for:

• Comparing two related assets (e.g., stock vs index for Beta calculation, pairs
trading).

• Using a higher timeframe for context (e.g., checking the daily trend while trading on
hourly data).

• Using economic data alongside price data.

If you were to load multiple data feeds into the Backtester engine (this setup happens
outside the strategy code itself), you would access them within the strategy using the
self.datas list or the self.dataX aliases:

• self.data or self.datas[0] or self.data0: The first data feed added. This
typically drives the main clock/timing of the backtest.

• self.data1 or self.datas[1]: The second data feed added.
• self.data2 or self.datas[2]: The third data feed added.
• …and so on.

Python

import backtrader as bt

Assume data0 is AAPL daily, data1 is SPY daily
class MultiDataDemo(bt.Strategy):
 def __init__(self):
 # Access lines from the first data feed (AAPL)
 self.aapl_close = self.datas[0].close

 # Access lines from the second data feed (SPY)
 self.spy_close = self.datas[1].close

 print("Strategy initialized with 2 data feeds")

 def next(self):
 # Access current values from both feeds using [0]
 current_aapl_close = self.aapl_close[0]
 current_spy_close = self.spy_close[0]

 # Access previous values using [-1]

Chapter 2: Working with Data Inside a Strategy 17

 prev_aapl_close = self.aapl_close[-1]
 prev_spy_close = self.spy_close[-1]

 print(f"Date: {self.data.datetime.date(0)}")
 print(f" AAPL Close: {current_aapl_close:.2f} (Prev: {prev_aa
pl_close:.2f})")
 print(f" SPY Close : {current_spy_close:.2f} (Prev: {prev_spy
_close:.2f})")

 # Example: Check if AAPL outperformed SPY on the previous day
 aapl_ret = (self.aapl_close[-1] / self.aapl_close[-2]) - 1
 spy_ret = (self.spy_close[-1] / self.spy_close[-2]) - 1

 if aapl_ret > spy_ret:
 print(" AAPL outperformed SPY yesterday.")

Synchronization: backtrader automatically handles the synchronization between
multiple data feeds. The next() method will only be called when all active data feeds have
a bar corresponding to the timestamp of the primary data feed (self.datas[0]). If one
feed has missing data for a particular day, next() might not be called for that day.

Chapter 3: Using Indicators in Your Strategy 18

Chapter 3: Using Indicators in Your Strategy

Technical indicators are the backbone of many trading strategies, helping to analyze
market conditions and generate potential trading signals. Backtester, via the backtrader
framework, provides easy access to a wide range of indicators from two main sources:

5. backtrader’s built-in indicators: A collection of common indicators directly
implemented within the framework (bt.indicators.*).

6. TA-Lib wrappers: Seamless integration with most functions from the popular TA-
Lib library (bt.talib.*).

This chapter explains how to instantiate, access, and manage these indicators within your
strategies.

3.1. Instantiating Indicators in __init__

Regardless of whether you’re using a built-in backtrader indicator or a TA-Lib wrapper,
the process starts in your strategy’s __init__ method. Here, you create instances of the
indicators you need and assign them to attributes of self. This makes them available
throughout the lifetime of your strategy instance.

Python

import backtrader as bt

class IndicatorInitDemo(bt.Strategy):
 params = (
 ('ma_period', 20),
 ('rsi_period', 14),
)

 def __init__(self):
 # Get reference to close price line
 self.dataclose = self.datas[0].close

 # Instantiate a built-in backtrader indicator
 self.sma = bt.indicators.SimpleMovingAverage(
 self.datas[0], # Can operate on the data feed directly
 period=self.p.ma_period
)

 # Instantiate a TA-Lib indicator using the backtrader wrapper
 self.rsi = bt.talib.RSI(
 self.dataclose, # Can also operate on a specific line
 timeperiod=self.p.rsi_period # Note: TA-Lib often uses 'ti
meperiod'
)

Chapter 3: Using Indicators in Your Strategy 19

 self.log('Indicators have been instantiated in __init__')

 # Required methods log, next, notify_order etc. would follow
 def log(self, txt, dt=None): # Basic log method
 dt = dt or self.datas[0].datetime.date(0); print(f'{dt.isoformat
()}, {txt}')
 def next(self): pass # Placeholder

Creating indicators in __init__ ensures they are set up correctly before the engine starts
processing historical bars.

3.2. Accessing Indicator Values in next() (using [0], [-1], attribute access)

Once instantiated, the indicator objects (like self.sma or self.rsi above) behave like
backtrader “lines” objects (see Chapter 2.2). Inside your next() method (after the initial
minimum period), you access their calculated values using the standard relative indexing:

• self.indicator_name[0]: Gets the calculated value for the current bar.
• self.indicator_name[-1]: Gets the value from the previous bar.
• self.indicator_name[-n]: Gets the value from n bars ago.

For indicators that produce multiple output lines (like MACD or Bollinger Bands), you
access the specific lines using attributes before applying the index:

• self.macd.lines.macd[0] or simply self.macd.macd[0]
• self.macd.lines.signal[0] or self.macd.signal[0]
• self.bbands.lines.top[0] or self.bbands.top[0] (Note: Line names can

vary slightly between built-in and TA-Lib versions, check documentation if unsure).

Python

 def next(self):
 # Access the current calculated value of the SMA
 current_sma_value = self.sma[0]

 # Access the current and previous RSI values
 current_rsi_value = self.rsi[0]
 previous_rsi_value = self.rsi[-1]

 self.log(f'Close: {self.dataclose[0]:.2f}, SMA: {current_sma_v
alue:.2f}, RSI: {current_rsi_value:.2f}')

 # Example using indicator values in logic
 if self.dataclose[0] > current_sma_value and current_rsi_value
< 70:
 self.log("Close above SMA and RSI not overbought")
 # Potentially place a buy order here

Chapter 3: Using Indicators in Your Strategy 20

3.3. backtrader Built-in Indicators (bt.indicators.*)

This module contains backtrader’s natively implemented indicators.

• Common Examples:

– bt.indicators.SimpleMovingAverage (SMA)
– bt.indicators.ExponentialMovingAverage (EMA)
– bt.indicators.WeightedMovingAverage (WMA)
– bt.indicators.MACD (Moving Average Convergence Divergence - provides

macd, signal, histo lines)
– bt.indicators.RSI (Relative Strength Index)
– bt.indicators.Stochastic (Provides percK, percD lines)
– bt.indicators.BollingerBands (Provides top, mid, bot lines)
– bt.indicators.ATR (Average True Range)
– bt.indicators.CCI (Commodity Channel Index)
– bt.indicators.Momentum
– bt.indicators.ROC (Rate of Change)
– bt.indicators.StandardDeviation
– …and many others.

• Usage Example:

Python

import backtrader as bt

class BuiltInIndicatorsDemo(bt.Strategy):
 params = (('macd1', 12), ('macd2', 26), ('macdsig', 9), ('stoch_k'
, 14), ('stoch_d', 3))

 def __init__(self):
 self.dataclose = self.datas[0].close

 self.macd = bt.indicators.MACD(
 self.dataclose,
 period_me1=self.p.macd1, # Note different param names some
times
 period_me2=self.p.macd2,
 period_signal=self.p.macdsig
)

 self.stoch = bt.indicators.Stochastic(
 self.data, # Can operate on the data feed
 period=self.p.stoch_k,
 period_dfast=self.p.stoch_d # Note different param names s

Chapter 3: Using Indicators in Your Strategy 21

ometimes
 # Default is Slow Stochastic
)

 # Using an indicator on another indicator's output
 self.macd_sma = bt.indicators.SimpleMovingAverage(self.macd.ma
cd, period=5)

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0); print(f'{dt.isoform
at()}, {txt}')

 def next(self):
 # Access MACD lines
 current_macd = self.macd.macd[0]
 current_signal = self.macd.signal[0]
 current_histo = self.macd.histo[0]

 # Access Stochastic lines
 current_stoch_k = self.stoch.percK[0] # Check docs for line na
mes
 current_stoch_d = self.stoch.percD[0]

 # Access SMA of MACD line
 current_macd_sma = self.macd_sma[0]

 self.log(f'MACD: {current_macd:.2f}, Sig: {current_signal:.2f}
, Histo: {current_histo:.2f}')
 self.log(f'Stoch %K: {current_stoch_k:.2f}, %D: {current_stoch
_d:.2f}')
 self.log(f'SMA(MACD): {current_macd_sma:.2f}')

3.4. Using TA-Lib via backtrader Wrappers (bt.talib.*)

backtrader significantly extends the range of available indicators by providing wrappers
that allow you to use most functions from the TA-Lib library as if they were native
backtrader indicators.

• Explanation of Wrappers: These wrappers (accessed via
bt.talib.FunctionName) are highly recommended over using talib directly
because they:

– Accept backtrader data/indicator lines as input automatically.
– Return standard backtrader lines objects as output.

Chapter 3: Using Indicators in Your Strategy 22

– Correctly handle NaN values during the initial calculation period, integrating
with backtrader’s minimum period system.

– Work seamlessly with plotting and the engine’s data synchronization.
• Common Examples (bt.talib.*): (Note: Parameter names like timeperiod are

common in TA-Lib)

– bt.talib.SMA(line, timeperiod=...)
– bt.talib.EMA(line, timeperiod=...)
– bt.talib.RSI(line, timeperiod=...)
– bt.talib.MACD(line, fastperiod=..., slowperiod=...,

signalperiod=...) - Returns macd, macdsignal, macdhist lines.
– bt.talib.BBANDS(line, timeperiod=..., nbdevup=...,

nbdevdn=...) - Returns upperband, middleband, lowerband lines.
– bt.talib.ATR(high_line, low_line, close_line,

timeperiod=...)
– bt.talib.STOCH(high, low, close, fastk_period=...,

slowk_period=..., slowd_period=...) - Returns slowk, slowd lines.
– bt.talib.ADX(high, low, close, timeperiod=...)
– bt.talib.CDLDOJI(open, high, low, close) - Returns a boolean-like

line (evaluates True if pattern found).
– … and hundreds more covering all TA-Lib categories.

• Usage Example:

Python

import backtrader as bt
No need to 'import talib' when using wrappers

class TALibWrapperDemo(bt.Strategy):
 params = (
 ('bb_period', 20),
 ('atr_period', 14),
)

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.datahigh = self.datas[0].high
 self.datalow = self.datas[0].low
 self.dataopen = self.datas[0].open

 # Instantiate TA-Lib indicators via wrappers
 self.bbands = bt.talib.BBANDS(
 self.dataclose,
 timeperiod=self.p.bb_period,
 nbdevup=2.0,

Chapter 3: Using Indicators in Your Strategy 23

 nbdevdn=2.0
)

 self.atr = bt.talib.ATR(
 self.datahigh, self.datalow, self.dataclose,
 timeperiod=self.p.atr_period
)

 self.doji = bt.talib.CDLDOJI(# Candlestick pattern
 self.dataopen, self.datahigh, self.datalow, self.dataclos
e
)

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0); print(f'{dt.isoform
at()}, {txt}')

 def next(self):
 # Access Bollinger Bands lines
 upper_band = self.bbands.upperband[0]
 middle_band = self.bbands.middleband[0]
 lower_band = self.bbands.lowerband[0]

 # Access ATR value
 current_atr = self.atr[0]

 # Access Doji pattern result (evaluates True if pattern detect
ed)
 is_doji = self.doji[0]

 self.log(f'Close={self.dataclose[0]:.2f}, LowerB={lower_band:.
2f}, UpperB={upper_band:.2f}, ATR={current_atr:.2f}')

 if is_doji:
 self.log('*** Doji Pattern Detected! ***')

Using the bt.talib.* wrappers gives you access to a vast library of indicators with
minimal friction within the Backtester environment.

3.5. Creating Custom Indicators (Brief Overview)

If you need a unique indicator not found in backtrader’s built-ins or TA-Lib, you can
develop your own. This involves creating a Python class that inherits from bt.Indicator,
defining its parameters and output lines, and implementing the calculation logic. This is an
advanced feature; consult the backtrader documentation for details if required.

3.6. Indicator Plotting Control (plotinfo dictionary)

Chapter 3: Using Indicators in Your Strategy 24

As seen in the Backtester app’s plot pane, indicators are automatically visualized. You can
control how they are plotted using the plotinfo parameter when instantiating an
indicator.

Python

 def __init__(self):
 # SMA - make sure it's on the main plot (subplot=False)
 # and give it a custom name
 self.sma = bt.indicators.SimpleMovingAverage(
 self.datas[0], period=50,
 plotinfo=dict(subplot=False, plotname='SMA(50)')
)

 # RSI - Ensure it's in a subplot with lines at 30/70
 self.rsi = bt.talib.RSI(
 self.dataclose, timeperiod=14,
 # Can pass plotinfo directly to wrappers too
 plotinfo=dict(subplot=True, plothlines=[30.0, 70.0])
)

 # ATR - Plot in a subplot, maybe above price data
 self.atr = bt.talib.ATR(
 self.datahigh, self.datalow, self.dataclose, timeperiod=1
4
)
 # Modify plotinfo after instantiation
 self.atr.plotinfo.subplot = True
 self.atr.plotinfo.plotabove = True
 self.atr.plotinfo.plotname = f'ATR({self.atr.p.timeperiod})'

 # Don't plot this indicator at all
 self.ema_noplot = bt.indicators.EMA(self.dataclose, period=10,
plot=False)

Common plotinfo keys:

• plot=True/False: Enable/disable plotting.
• subplot=True/False: Plot in separate panel or overlay on price data.
• plotname='Custom Name': Name shown on the plot.
• plotabove=True/False: If subplot, plot above price instead of below.
• plothlines=[value1, value2]: Draw horizontal lines at specified y-values.
• plotyticks=[value1, value2]: Suggest specific y-axis ticks.

Customizing plotinfo helps tailor the charts generated by Backtester to best visualize the
indicators relevant to your strategy.

Chapter 3: Using Indicators in Your Strategy 25

Chapter 4: Order ExecuƟon 26

Chapter 4: Order ExecuƟon

Once your strategy logic, using data and indicators, determines it’s time to enter or exit a
position, you need to communicate that decision to the trading engine. This is done by
creating trade orders.

4.1. Interacting with the Broker (self.broker)

Backtester simulates a brokerage account for each backtest. This simulation handles your
cash balance, tracks your open positions, calculates portfolio value, applies commissions,
and processes your trade orders.

While you don’t usually interact with all aspects of the broker directly within the main
strategy logic, your primary interaction happens through placing orders using methods
provided by the Strategy class itself (like buy(), sell(), close()). These methods,
behind the scenes, create order objects and submit them to the simulated broker
(self.broker) for processing. The broker object holds the current state of your simulated
account (e.g., self.broker.get_cash(), self.broker.get_value()), which we’ll
explore more in later chapters.

4.2. Placing Basic Orders: buy(), sell(), close()

These are the fundamental methods called from within your next() method to initiate
trades based on your strategy’s signals:

• self.buy(): Creates an order to enter a long position (if not already long) or to
cover/reduce a short position.

• self.sell(): Creates an order to enter a short position (if not already short) or
to sell/reduce a long position.

• self.close(): Creates an order to close the current open position for the
default data feed (self.data). It automatically creates a sell order if you are long,
or a buy order if you are short, with the correct size to flatten the position.

Python

import backtrader as bt
Assuming other imports like numpy, talib if used by conditions

class BasicOrderDemo(bt.Strategy):
 params = (('exit_bars', 5),) # Exit after holding 5 bars

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.order = None # To track pending orders
 self.buyprice = None
 self.buycomm = None
 self.bar_executed = 0 # When was the trade executed

Chapter 4: Order ExecuƟon 27

 def notify_order(self, order): # Covered in Chapter 6
 if order.status in [order.Submitted, order.Accepted]:
 return # Buy/Sell order submitted/accepted - Nothing to do

 # Check if an order has been completed
 if order.status in [order.Completed]:
 if order.isbuy():
 self.log(f'BUY EXECUTED, Price: {order.executed.price:
.2f}, Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2f
}')
 self.buyprice = order.executed.price
 self.buycomm = order.executed.comm
 elif order.issell():
 self.log(f'SELL EXECUTED, Price: {order.executed.price
:.2f}, Cost: {order.executed.value:.2f}, Comm: {order.executed.comm:.2
f}')

 self.bar_executed = len(self) # Record bar number when exe
cuted

 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log('Order Canceled/Margin/Rejected')

 # Write down: no pending order
 self.order = None

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 # Use current time in log message format
 current_timestamp = self.datas[0].datetime.datetime(0).strftim
e("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetime')
else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

 def next(self):
 # Log the closing price of the current bar
 self.log(f'Close: {self.dataclose[0]:.2f}')

 # Check if an order is pending ... if yes, we cannot send a 2n
d one
 if self.order:
 return

Chapter 4: Order ExecuƟon 28

 # Check if we are in the market
 if not self.position: # Not in market
 # Example entry condition: Simple Crossover (replace with
your logic)
 # Check if enough data exists for the condition
 if len(self.dataclose) > 2: # Need at least 3 bars for thi
s condition
 if self.dataclose[0] > self.dataclose[-1] and self.dat
aclose[-1] < self.dataclose[-2]:
 self.log('BUY CREATE, %.2f' % self.dataclose[0])
 # Keep track of the created order to avoid a 2nd o
rder
 self.order = self.buy()

 else: # Already in the market
 # Example exit condition: Close after holding for N bars
 if len(self) >= (self.bar_executed + self.p.exit_bars):
 self.log('CLOSE CREATE, %.2f' % self.dataclose[0])
 # Keep track of the created order
 self.order = self.close()

• Order Creation vs Execution: Calling buy(), sell(), or close() only creates the
order request. The actual execution (when the trade occurs and at what price)
depends on the order type and the simulation timing rules.

• Size: You can specify the size of the trade (e.g., self.buy(size=10)). If omitted,
backtrader uses a “Sizer” object (defaulting to a size of 1 unit). Sizers are covered
in Chapter 5.

4.3. Understanding Order Execution Timing (Default: Next Bar Open)

A critical concept in backtesting is when orders are assumed to be executed relative to
when the signal occurs. By default, backtrader simulates a realistic delay:

• If your logic inside next() for bar N generates a buy() or sell() signal (typically
using data up to the close of bar N), the order is submitted to the simulated broker.

• The broker, by default, executes standard Market orders at the opening price of
the next bar (bar N+1).

This mimics the real-world scenario where you observe the market close, make a decision,
place an order, and it gets filled when the market reopens or at the next available tick.

While backtrader offers ways to modify this timing (e.g., “Cheat-on-Close” settings,
covered in advanced chapters), you should generally assume this “next bar open” execution
for standard Market orders unless you explicitly configure otherwise.

4.4. Order Types (exectype parameter)

Chapter 4: Order ExecuƟon 29

The buy() and sell() methods can create different types of orders by specifying the
exectype parameter. The most common types are:

4.4.1. Order.Market

• self.buy(exectype=bt.Order.Market) or simply self.buy()
• self.sell(exectype=bt.Order.Market) or simply self.sell()
• This is the default type.
• Executes at the best available price as soon as possible.
• In backtesting simulation: Typically executes at the open of the next bar.
• Does not require a price parameter.

4.4.2. Order.Limit

• self.buy(exectype=bt.Order.Limit, price=desired_buy_price)
• self.sell(exectype=bt.Order.Limit, price=desired_sell_price)
• Executes only at the specified price or a better price (lower for buy, higher for sell).
• Requires the price parameter.
• In simulation: Checked against the H/L/O prices of subsequent bars. For example, a

buy limit might fill if the low of the next bar is at or below the limit price. The fill
price could be the limit price itself or the open if the open is already better than the
limit.

4.4.3. Order.Stop

• self.buy(exectype=bt.Order.Stop, price=trigger_buy_price)
• self.sell(exectype=bt.Order.Stop, price=trigger_sell_price)
• Triggers a Market order if the market price touches or moves beyond the specified

price.
• Requires the price parameter (the trigger price).
• Commonly used for:

– Stop-Loss: A sell stop below the current price for a long position, or a buy
stop above the current price for a short position.

– Entry on Breakout: A buy stop above the current price, or a sell stop below
the current price.

• In simulation: If the high/low of the next bar crosses the stop price, a market order
is triggered and typically filled at the open of the following bar, or potentially at the
stop price itself depending on simulation details.

4.4.4. Order.StopLimit

• self.buy(exectype=bt.Order.StopLimit, price=trigger_buy_price,
pricelimit=limit_buy_price)

• self.sell(exectype=bt.Order.StopLimit, price=trigger_sell_price,
pricelimit=limit_sell_price)

Chapter 4: Order ExecuƟon 30

• Combines Stop and Limit features. Triggers if the market price touches or moves
beyond the price (stop price).

• If triggered, it then places a Limit order at the pricelimit.
• Requires both price (trigger) and pricelimit (limit).
• Offers more price control than a regular Stop order after the trigger, but carries the

risk the limit order might not fill if the price moves quickly past the pricelimit.

4.4.5. Order.Close

• self.buy(exectype=bt.Order.Close)
• self.sell(exectype=bt.Order.Close)
• This type is intended to simulate a “Market-on-Close” (MOC) order.
• It aims to execute at the closing price of the bar.
• In backtrader’s default simulation, this usually means the order created during bar

N executes at the closing price of bar N+1. This behavior can be altered by “Cheat-
on-Close” settings (advanced topic).

• Note: This is different from the self.close() method, which creates a standard
Market order to exit a position on the next bar’s open. Order.Close specifically
targets a close price execution.

4.5. Specifying Price Parameters (price, pricelimit)

As seen above, certain order types require you to specify price levels:

• price: Used by Limit, Stop, and StopLimit orders to define the limit level or the
trigger level.

• pricelimit: Used only by StopLimit orders to define the price for the subsequent
limit order once the stop price is triggered.

Market orders do not use these parameters as they execute at the prevailing market price.

4.6. Order Validity (valid parameter, Good-’til-Canceled)

You can control how long an order remains active if it’s not immediately filled using the
valid parameter:

• valid=None (Default): The order is Good ’til Canceled (GTC). It stays active in the
simulation across multiple bars until it’s either filled or you explicitly cancel it using
self.cancel(). Note: Real brokers might impose very long-term expiration dates
even on GTC orders.

• valid=datetime_object: Provide a specific datetime.datetime or
datetime.date object. The order becomes Good ’til Date (GTD) and will expire if
not filled by that time.

 Python

Chapter 4: Order ExecuƟon 31

 import datetime
Make sure expiry_date is in the future relative to the backtest
data
expiry_date = datetime.date(2025, 12, 31) # Example date
Ensure the date is valid for the data timeframe being used
For example, if using daily data, specify just the date
If using intraday, specify datetime
try:
 # Check if backtest end date is available, requires Cerebro s
etup info
 # backtest_end_date = self.datas[0].p.todate # This might not
be directly available
 # A safer approach might be to set a date far in the future i
f GTC isn't suitable
 # Or calculate based on current bar's date
 current_date = self.datas[0].datetime.date(0)
 expiry_date_relative = current_date + datetime.timedelta(days
=30) # Example: valid for 30 days
 self.buy(exectype=bt.Order.Limit, price=100.0, valid=expiry_d
ate_relative)
except IndexError: # Handle cases where date might not be availab
le yet
 self.log("Cannot determine current date yet for GTD order.")

• valid=bt.Order.DAY or valid=0 or valid=datetime.timedelta(): Creates a
Day Order. If not filled during the session it’s placed in (often interpreted as the
next bar in basic backtesting), it expires automatically.

4.7. Cancelling Pending Orders (cancel(order))

Sometimes you might want to cancel an order you placed earlier (e.g., a limit order that
hasn’t filled and market conditions have changed).

7. Store the Order Reference: When you call buy() or sell(), the method returns
an Order object. You need to store this reference if you intend to cancel it later.

8. Call self.cancel(): Pass the stored order reference to the self.cancel()
method.

Python

 def __init__(self):
 # ... other initializations ...
 self.my_limit_order = None # Variable to hold the order refere
nce

 def next(self):
 # --- Placing a limit order ---

Chapter 4: Order ExecuƟon 32

 # Ensure we have data before accessing low[0]
 if len(self.data.low) > 0 and self.my_limit_order is None and
some_condition: # Only place if no order pending
 limit_price = self.data.low[0] - 0.5 # Example price
 self.log(f'Placing BUY LIMIT order at {limit_price:.2f}')
 self.my_limit_order = self.buy(exectype=bt.Order.Limit, pr
ice=limit_price, size=10)

 # --- Cancelling the order ---
 if some_other_condition and self.my_limit_order is not None:
 # Check if the order is still active before cancelling
 # Use getstatusname() for readable status
 order_status = self.my_limit_order.status
 if order_status in [bt.Order.Submitted, bt.Order.Accepted,
bt.Order.Partial]: # Active states
 self.log(f'Cancelling order {self.my_limit_order.ref}
')
 self.cancel(self.my_limit_order)
 # self.my_limit_order will be set to None in notify_o
rder
 # when cancellation is confirmed (status becomes Canc
eled)
 else:
 # Order already filled, completed, or rejected - cann
ot cancel
 status_name = self.my_limit_order.getstatusname() if
hasattr(self.my_limit_order, 'getstatusname') else order_status
 self.log(f'Cannot cancel order {self.my_limit_order.r
ef}, status: {status_name}')
 # It might be prudent to set self.my_limit_order = No
ne here too,
 # as it's no longer a pending, cancellable order.
 self.my_limit_order = None

 # Assume notify_order exists to handle setting self.my_limit_order
= None on final states
 # Assume log method exists
 # Assume some_condition and some_other_condition are defined

• Cancellation is a Request: Calling self.cancel() submits a cancellation request.
It’s possible the order could be filled just before the cancellation is processed by the
simulated broker. You need to check the order status updates via the
notify_order method (covered in Chapter 6) to confirm if cancellation was
successful.

Chapter 5: PosiƟon Sizing and Management 33

Chapter 5: PosiƟon Sizing and Management

Simply generating buy or sell signals isn’t enough; you also need to decide how much to
trade. This is known as position sizing, and it’s a critical component of risk management.
Backtester, through backtrader, offers several ways to manage the size of your orders.

5.1. Default Sizing

If you call self.buy() or self.sell() without specifying a size argument, backtrader
uses a default position sizing mechanism. By default, this mechanism is usually a Fixed Size
Sizer configured to trade 1 unit (e.g., 1 share, 1 contract, 1 coin) per order.

Python

 def next(self):
 if some_buy_condition:
 # This will typically buy 1 unit if no other sizer is conf
igured
 self.buy()

So, unless you specify otherwise (either via the methods below or potentially through
settings in the main Backtester app interface), simple buy() and sell() calls will trade a
quantity of 1.

5.2. Using backtrader Sizers (bt.Sizer, addsizer)

backtrader has a concept of Sizers, which are reusable components designed to
automatically calculate the trade size based on predefined rules. While the configuration of
which Sizer to use is typically done outside the strategy code (likely in the Backtester app’s
main setup or configuration for a specific backtest run, using cerebro.addsizer(...)),
it’s important to understand how your strategy interacts with them.

Common built-in Sizers include:

• bt.sizers.FixedSize: Trades a fixed number of units specified by a stake
parameter (the default sizer uses this with stake=1).

• bt.sizers.PercentSizer: Calculates the size based on a percentage of the
available cash or portfolio value (configurable) in the simulated broker account. For
example, percents=10 would try to use 10% of the base for the trade.

• bt.sizers.AllInSizer: Uses (almost) all available cash or portfolio value for the
trade, effectively going “all in”.

• bt.sizers.FixedReverser: Closes the current position and enters an opposite
position of a fixed size.

How it works with your strategy: If a Sizer (other than the default FixedSize=1) has been
configured for your backtest run in the Backtester app, simply calling self.buy() or
self.sell() without the size parameter will automatically invoke that Sizer’s logic to
determine the trade quantity. Your strategy code doesn’t need to change, but the resulting

Chapter 5: PosiƟon Sizing and Management 34

trade size will vary based on the active Sizer and the current account state (like cash
balance or portfolio value).

5.3. Setting Size Directly in buy/sell

You always have the option to override any active Sizer and specify the exact trade
quantity directly within your strategy logic by using the size parameter in your buy() or
sell() calls.

Python

import backtrader as bt
Assuming condition_A, condition_B, condition_C are defined elsewhere

class DirectSizingDemo(bt.Strategy):
 params = (
 ('fixed_trade_size', 10),
 ('risk_percent', 0.02), # e.g., risk 2% of portfolio per trade
 ('atr_period', 14),
 ('atr_stop_multiplier', 2.0) # Stop distance in multiples of A
TR
)

 def __init__(self):
 self.dataclose = self.data.close
 self.datahigh = self.data.high
 self.datalow = self.data.low
 self.order = None

 # Instantiate ATR using bt.talib wrapper for risk sizing
 self.atr = bt.talib.ATR(self.datahigh, self.datalow, self.data
close,
 timeperiod=self.p.atr_period) # Note:
timeperiod param

 def notify_order(self, order): # Basic order notification
 if order.status in [order.Submitted, order.Accepted]: return
 if order.status in [order.Completed]:
 exec_type = 'BUY' if order.isbuy() else 'SELL'
 self.log(f'{exec_type} EXECUTED, Size: {order.executed.siz
e}, Price: {order.executed.price:.2f}')
 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log(f'Order Canceled/Margin/Rejected')
 self.order = None # Reset pending order flag

 def log(self, txt, dt=None):

Chapter 5: PosiƟon Sizing and Management 35

 dt = dt or self.datas[0].datetime.date(0)
 # Use current time in log message format
 current_timestamp = self.datas[0].datetime.datetime(0).strftim
e("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetime')
else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

 def next(self):
 # Example 1: Trade a fixed number of units defined by a parame
ter
 if condition_A and not self.order and not self.position:
 self.log(f"BUYING {self.p.fixed_trade_size} units")
 self.order = self.buy(size=self.p.fixed_trade_size)

 # Example 2: Trade a specific fractional size (e.g., for crypt
o)
 elif condition_B and not self.order and not self.position:
 self.log("BUYING 0.5 units")
 self.order = self.buy(size=0.5)

 # Example 3: Simple risk-based sizing using ATR (Illustrative)
 elif condition_C and not self.order and not self.position:
 # Get the current ATR value from the instantiated indicato
r
 current_atr = self.atr[0]

 # Ensure ATR is valid (not NaN) and positive
 # Use bt.numsupport.isnan for robustness within backtrader
 if current_atr is not None and not bt.numsupport.isnan(cur
rent_atr) and current_atr > 0:
 portfolio_value = self.broker.get_value() # Use portfo
lio value
 price = self.data.close[0] # Use current close as esti
mated entry price
 cash = self.broker.get_cash()

 # Calculate stop distance based on ATR
 stop_distance_points = self.p.atr_stop_multiplier * cu
rrent_atr

 # Calculate amount to risk based on portfolio percenta
ge
 risk_amount = portfolio_value * self.p.risk_percent

 # Calculate risk per unit (share/coin/contract)
 # NOTE: This assumes 1 point move = $1 risk per unit.

Chapter 5: PosiƟon Sizing and Management 36

 # Adjust for futures point values, forex pip values, e
tc.
 risk_per_unit = stop_distance_points

 trade_size = 0 # Default size if calculation fails
 if risk_per_unit > 1e-9: # Avoid division by zero
 calculated_size = risk_amount / risk_per_unit

 # Ensure size is reasonable (e.g., round down, app
ly minimums/multiples)
 # Example rounding for crypto/fractional: round do
wn to 3 decimal places
 trade_size = max(0.0, int(calculated_size * 1000)
/ 1000.0)

 # Final checks
 required_cash = trade_size * price # Rough estimat
e, ignores commission/slippage
 if trade_size <= 0:
 self.log("Sizing resulted in 0 size.")
 elif required_cash > cash:
 self.log(f"Insufficient cash for calculated s
ize. Need {required_cash:.2f}, Have {cash:.2f}")
 trade_size = 0 # Cannot afford trade
 else:
 self.log(f"ATR={current_atr:.2f}, RiskAmt={ri
sk_amount:.2f}, Risk/Unit={risk_per_unit:.2f}, TradeSize={trade_size}"
)
 self.order = self.buy(size=trade_size) # Plac
e the sized order
 else:
 self.log("Cannot calculate size: Risk per unit is
zero or near zero.")

 else:
 self.log(f"ATR is not valid yet or zero: {current_atr
}")

 # Placeholder for sell/close logic if needed
 elif self.position and some_exit_condition:
 self.order = self.close() # Uses default size (1) or Size
r unless size specified

Specifying size directly gives you complete control for that specific order, bypassing any
globally configured Sizer for that trade.

Chapter 5: PosiƟon Sizing and Management 37

5.4. Checking Your Position (self.position)

It’s essential for your strategy to know whether it currently holds an open position in the
market before deciding to enter a new one or exit an existing one. The self.position
attribute provides this information for the primary data feed (self.data).

• Boolean Context: You can use self.position directly in if statements:

– if self.position: evaluates to True if you currently hold any position
(long or short).

– if not self.position: evaluates to True if you are currently flat (no
position).

• Position Details: If a position exists, self.position is an object containing details
about that position.

5.4.1. self.position.size

This attribute tells you the quantity of the asset you currently hold.

• self.position.size > 0: You have a long position of that size.
• self.position.size < 0: You have a short position of that size (represented as

a negative number).
• self.position.size == 0: You have no open position (you are flat).

Python

 def next(self):
 current_size = self.position.size # Get current size

 if current_size > 0:
 self.log(f"Currently LONG {current_size} units.")
 # Apply logic for long positions (e.g., check for sell sig
nal)
 if sell_condition_for_long:
 self.order = self.close() # Or self.sell(size=current
_size)

 elif current_size < 0:
 self.log(f"Currently SHORT {abs(current_size)} units.")
 # Apply logic for short positions (e.g., check for buy-to-
cover signal)
 if cover_condition_for_short:
 self.order = self.close() # Or self.buy(size=abs(curr
ent_size))

 else: # current_size == 0
 self.log("Currently FLAT (no position).")
 # Place entry order only if flat

Chapter 5: PosiƟon Sizing and Management 38

 if entry_condition:
 self.order = self.buy(size=10) # Or use a sizer, or ca
lculate size

5.4.2. self.position.price

This attribute gives you the average entry price for your current open position. This price
includes the weighted average if you added to the position multiple times.

Python

 def next(self):
 if self.position: # Check if a position exists
 entry_price = self.position.price
 current_price = self.data.close[0]
 size = self.position.size

 # Calculate unrealized PnL based on average entry price
 # Note: For shorts (size<0), price diff is (entry - curren
t)
 price_diff = current_price - entry_price
 unrealized_pnl = price_diff * size

 self.log(f"Pos Size: {size}, Entry Price: {entry_price:.2f
}, Cur Price: {current_price:.2f}, Unrealized PnL: {unrealized_pnl:.2f
}")

 # Example: Set a take-profit based on entry price
 if size > 0: # Long position
 target_price = entry_price * 1.10 # 10% take profit t
arget
 if current_price >= target_price:
 self.log(f"TAKE PROFIT (Long) triggered at {curre
nt_price:.2f}")
 self.order = self.close()
 elif size < 0: # Short position
 target_price = entry_price * 0.90 # 10% take profit t
arget for short
 if current_price <= target_price:
 self.log(f"TAKE PROFIT (Short) triggered at {curr
ent_price:.2f}")
 self.order = self.close()

Using self.position.size and self.position.price allows your strategy to make
decisions based on its current market exposure and profitability.

Chapter 6: Receiving Feedback: NoƟficaƟons 39

Chapter 6: Receiving Feedback: NoƟficaƟons

Placing an order with self.buy(), self.sell(), or self.close() is just sending an
instruction. You need a way to know what actually happened: Did the order get accepted?
Did it fill? At what price? Was it rejected? Did a complete trade result in a profit or loss?

backtrader provides this crucial feedback through two special methods you can
implement in your strategy class: notify_order() and notify_trade().

6.1. The notify_order(order) Method

This method is automatically called by the Backtester engine whenever there is an update
to the status of an order you previously created. It receives an order object as an
argument, which contains all the information about that specific order and its current state.

You need to define this method in your strategy class to process these updates.

Python

import backtrader as bt

class NotifyOrderExample(bt.Strategy):

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.order = None # Variable to hold reference to pending orde
r

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 # Use current time in log message format
 current_timestamp = self.datas[0].datetime.datetime(0).strftim
e("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetime')
else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

 def notify_order(self, order):
 # Called by backtrader upon order status changes

 if order.status == order.Submitted:
 # Order submitted to broker/simulation
 self.log(f'ORDER SUBMITTED Ref: {order.ref}')

 elif order.status == order.Accepted:
 # Order accepted by broker/simulation
 self.log(f'ORDER ACCEPTED Ref: {order.ref}')

Chapter 6: Receiving Feedback: NoƟficaƟons 40

 elif order.status == order.Completed:
 # Order has been fully executed
 if order.isbuy():
 exec_type = 'BUY'
 elif order.issell():
 exec_type = 'SELL'
 else:
 exec_type = 'CLOSE' # Could be close order completion

 self.log(
 f'ORDER COMPLETED: {exec_type}, Ref: {order.ref}, '
 f'Size: {order.executed.size}, Price: {order.executed.
price:.2f}, '
 f'Value: {order.executed.value:.2f}, Comm: {order.exec
uted.comm:.2f}'
)
 # Store execution price if needed
 # self.last_execution_price = order.executed.price

 # Reset pending order reference AFTER completion
 self.order = None

 elif order.status == order.Partial:
 # Order partially executed
 self.log(f'ORDER PARTIAL: Ref: {order.ref}, Executed Size
: {order.executed.size}')

 elif order.status == order.Rejected:
 self.log(f'ORDER REJECTED: Ref: {order.ref}')
 self.order = None # Reset pending order reference

 elif order.status == order.Margin:
 self.log(f'ORDER MARGIN: Ref: {order.ref} - Not enough ca
sh/margin?')
 self.order = None # Reset pending order reference

 elif order.status == order.Cancelled or order.status == order.
Canceled: # Handle both spellings
 self.log(f'ORDER CANCELED: Ref: {order.ref}')
 self.order = None # Reset pending order reference

 elif order.status == order.Expired:
 self.log(f'ORDER EXPIRED: Ref: {order.ref}')
 self.order = None # Reset pending order reference

 # Note: Status flow might be Submitted -> Accepted -> Complete

Chapter 6: Receiving Feedback: NoƟficaƟons 41

d
 # Or Submitted -> Accepted -> Canceled etc.

 def next(self):
 # Example: Avoid placing new orders if one is already pending
 if self.order:
 self.log("Order pending, skipping bar.")
 return

 # Simple example: Buy on first bar if not in position
 if not self.position and len(self) == 1:
 self.log('Creating Market Buy Order')
 self.order = self.buy(size=1) # Store the order reference

 # Simple example: Close on bar 10 if in position
 elif self.position and len(self) == 10:
 self.log('Creating Market Close Order')
 self.order = self.close() # Store the order reference

6.1.1. Tracking Order Status (order.status, Order.* constants)

The core of notify_order involves checking the order.status attribute. Common
statuses include:

• Submitted: Your order request has been received by the simulation engine.
• Accepted: The simulated broker has acknowledged the order, and it’s now

“working” in the market (e.g., a limit order waiting for price, or a market order
waiting for the next bar).

• Partial: Only part of your order size has been filled (more relevant for advanced
simulations or live trading).

• Completed: Your order has been fully filled. This is a key status to check for
confirming trade execution.

• Canceled / Cancelled: Your cancellation request (self.cancel(order)) was
successful.

• Expired: The order was not filled within its validity period (e.g., a Day order, GTD
order).

• Margin: The order could not be accepted or was canceled because it would violate
margin requirements (e.g., insufficient cash).

• Rejected: The broker simulation rejected the order for another reason (e.g., invalid
size, price).

It’s crucial to handle the “final” states (Completed, Canceled, Expired, Margin,
Rejected) to know that the order is no longer active and to reset any internal tracking
variables your strategy uses (like self.order in the example, preventing placement of
new orders while one is pending).

Chapter 6: Receiving Feedback: NoƟficaƟons 42

6.1.2. Handling Rejections, Margin Calls, Expirations

notify_order is your strategy’s only way of knowing if an order failed. If you receive a
Margin or Rejected status, your intended trade did not happen. Similarly, an Expired
status means a non-Market order didn’t fill in time. Your strategy logic might need to log
these events or potentially adjust its state based on such failures. For instance, after a
rejection, you might clear the self.order flag so the strategy can attempt a new order on
the next bar if conditions still hold.

6.1.3. Accessing Execution Details (order.executed)

When an order status is Completed (or Partial), the order.executed attribute becomes
populated with details about the actual execution(s):

• order.executed.price: The price at which the order was filled. For partial fills,
this might be the average price so far.

• order.executed.size: The quantity that was filled in the last execution event.
• order.executed.value: The total monetary value of the last fill (size * price).
• order.executed.comm: The commission charged for this fill.
• order.executed.dt: The timestamp of the execution (useful for detailed logs).

You typically access these attributes inside the if order.status ==
order.Completed: block to log the execution details, store the entry/exit price (as shown
in the example), or perform other actions related to the successful trade execution.

6.2. The notify_trade(trade) Method

While notify_order deals with individual order events, notify_trade operates at the
level of a complete trade – typically a round trip involving an entry and a subsequent exit
for a given asset.

This method is called by the engine twice per trade:

9. When the trade is opened (i.e., the entry order is completed).
10. When the trade is closed (i.e., the exit order is completed).

It receives a trade object containing aggregated information about the entire trade
lifecycle.

Python

import backtrader as bt

class NotifyTradeExample(bt.Strategy):
 # (Requires __init__, log, notify_order, next methods as well)

 def notify_trade(self, trade):
 # Called by backtrader when a trade is opened or closed

Chapter 6: Receiving Feedback: NoƟficaƟons 43

 if not trade.isclosed:
 # If isopen is True, the trade just opened.
 # If isopen is False but isclosed is False, it's an update
 # (e.g., adding to a position), but we usually care more
 # about the final closing event. We can just return here.
 return

 # If we reach here, trade.isclosed is True

 pnl_gross = trade.pnl # Profit/Loss without commission
 pnl_net = trade.pnlcomm # Profit/Loss including commission

 self.log(f'TRADE CLOSED: Ref: {trade.ref}, Symbol: {trade.data
._name}, '
 f'Gross PnL: {pnl_gross:.2f}, Net PnL: {pnl_net:.2f},
'
 f'Bars Held: {trade.barlen}')

 # You could add logic here to track overall performance,
 # calculate win rate, etc., across multiple trades.

 # --- Need __init__, log, notify_order, next for a runnable strate
gy ---
 def __init__(self): self.order = None
 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 current_timestamp = self.datas[0].datetime.datetime(0).strftim
e("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetime')
else dt.isoformat()
 print(f'{current_timestamp}, {txt}')
 def notify_order(self, order):
 if order.status in [order.Completed, order.Canceled, order.Mar
gin, order.Rejected, order.Expired]: self.order=None
 def next(self):
 if self.order: return
 # Simple alternating buy/close logic for demonstration
 if not self.position:
 if len(self) % 5 == 1: # Buy every 5 bars if flat
 self.order = self.buy()
 elif self.position:
 if len(self) % 5 == 4: # Close 3 bars after entry
 self.order = self.close()

6.2.1. Tracking Trade Lifecycle (trade.isopen, trade.isclosed)

The trade object has boolean attributes to indicate its state when notify_trade is called:

Chapter 6: Receiving Feedback: NoƟficaƟons 44

• trade.isopen: True if the notification is for the opening of the trade.
notify_trade is called once when the entry order completes.

• trade.isclosed: True if the notification is for the closing of the trade.
notify_trade is called again when the exit order completes.

Most often, you are interested in the if trade.isclosed: block (or checking if not
trade.isclosed: return at the start) to analyze the outcome of the completed trade.

6.2.2. Accessing Trade Profit/Loss (trade.pnl, trade.pnlcomm)

When trade.isclosed is True, you can access the profitability of the completed trade:

• trade.pnl: The Gross Profit or Loss for the trade (calculated as (exit price -
entry price) * size, adjusted for shorts). This does not include commission
costs.

• trade.pnlcomm: The Net Profit or Loss for the trade. This includes the impact of
commissions paid on both the entry and exit orders. This is usually the more
relevant figure for performance analysis.

Other useful attributes when a trade is closed include:

• trade.ref: A unique reference for the trade.
• trade.data: The data feed the trade was executed on (useful if using multiple data

feeds). You can get the name via trade.data._name.
• trade.size: The size of the position that was closed.
• trade.price: The average entry price of the position.
• trade.value: The initial value of the position.
• trade.commission: Total commission for the round-trip trade.
• trade.baropen: The bar number (index) when the trade was opened.
• trade.barclose: The bar number when the trade was closed.
• trade.barlen: The duration of the trade in bars (barclose - baropen).

Implementing notify_order and notify_trade is essential for understanding how your
strategy’s instructions translate into actual simulated market actions and their outcomes.
They are invaluable for debugging and verifying your strategy’s execution flow.

Chapter 7: Advanced Strategy Features 45

Chapter 7: Advanced Strategy Features

Beyond the core mechanics of data handling, indicators, and basic orders, backtrader
(and thus Backtester) offers several advanced capabilities to build more sophisticated
strategies and analysis.

7.1. Managing Cash and Portfolio Value (self.broker.get_cash(),
self.broker.get_value())

Your strategy can dynamically access the current state of your simulated brokerage
account through the self.broker object. Two key methods are:

• self.broker.get_cash(): Returns the amount of cash currently available in the
account. This is useful for dynamic position sizing calculations (e.g., risking a
percentage of available cash) or simply checking if enough funds exist before placing
a trade.

• self.broker.get_value(): Returns the total current value of the portfolio, which
includes the available cash plus the market value of any currently held positions.
This represents your total equity and is often used as the base for percentage-based
risk management or performance tracking.

Python

 def next(self):
 # Get current cash and portfolio value
 cash = self.broker.get_cash()
 portfolio_value = self.broker.get_value()

 self.log(f'Cash: {cash:.2f}, Portfolio Value: {portfolio_value
:.2f}')

 # Example: Only trade if portfolio value > initial capital (de
fined in params)
 # if hasattr(self.p, 'initial_capital') and portfolio_value <
self.p.initial_capital:
 # # Consider logging this event
 # # self.log("Portfolio value below initial capital, halti
ng trading.")
 # return # Stop trading if below initial capital

 # Example: Use cash for sizing (Simplified)
 if not self.position and some_entry_condition: # Ensure some_e
ntry_condition is defined
 price = self.data.close[0]
 if price > 0: # Avoid division by zero
 # Simple sizing: invest 10% of available cash
 size_to_buy = (cash * 0.10) / price

Chapter 7: Advanced Strategy Features 46

 # Ensure calculated size is positive before logging/b
uying
 if size_to_buy > 0:
 self.log(f'Attempting to buy {size_to_buy:.4f} uni
ts based on cash.')
 self.buy(size=size_to_buy) # self.order assignment
might be needed
 else:
 self.log(f'Calculated size is zero or negative.')
 else:
 self.log(f'Price is zero or negative, cannot calculate
size.')

 # Assume log method and some_entry_condition exist
 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 current_timestamp = self.datas[0].datetime.datetime(0).strftim
e("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetime')
else dt.isoformat()
 print(f'{current_timestamp}, {txt}')
 # Define placeholder for condition if needed for testing
 # def __init__(self): global some_entry_condition; some_entry_cond
ition = True

7.2. Using Strategy Parameters (params) for Optimization (OptStrategy)

As covered in Chapter 1 (Section 1.2.2), defining strategy parameters using the params
class attribute is crucial for flexibility. A major benefit is enabling strategy optimization.

Optimization involves running your strategy automatically hundreds or thousands of times,
systematically varying the values of your defined params (e.g., trying SMA periods from 10
to 100). The Backtester engine (likely through its UI) would manage this process, running
each parameter combination and recording performance metrics (like final portfolio value,
Sharpe ratio, drawdown) to help you identify which parameter settings worked best
historically.

• Your Strategy’s Role: Your strategy code generally doesn’t need major changes for
basic optimization, as long as the values you want to test are defined in the params
tuple/dict and used within your logic (e.g., self.p.sma_period).

• Optimization Setup: Defining the parameter ranges (e.g., sma_period from 10 to
100, step 5) and launching the optimization run happens outside the strategy code,
typically configured via the main Backtester application interface.

• OptStrategy: For advanced optimization scenarios where you might want the
strategy itself to behave differently during an optimization run (e.g., collecting
specific data across runs), backtrader provides bt.OptStrategy. You can inherit

Chapter 7: Advanced Strategy Features 47

from this instead of bt.Strategy. However, for standard parameter tuning, using
bt.Strategy with well-defined params is usually sufficient.

7.3. Time-Based Operations and Timers (add_timer)

Sometimes, you need actions triggered by the passage of time, not just by price bar events.
Examples include: monthly rebalancing, exiting a trade N minutes after entry, or checking
external factors periodically. backtrader allows this using timers.

You typically set up a timer using self.add_timer() within __init__ or next. When the
timer condition is met, backtrader calls a specific method in your strategy:
notify_timer().

Python

import backtrader as bt
import datetime

class TimerStrategyDemo(bt.Strategy):

 def __init__(self):
 self.log("Initializing Timer Demo")
 # Example 1: Trigger approximately at the end of each month
 self.add_timer(
 when=bt.timer.SESSION_END, # Trigger at session end relati
ve to data timeframe
 monthdays=[25], # Try around the 25th calendar day
 monthcarry=True, # If 25th is holiday/weekend, trigger on
next session_end
 tzdata=self.data0.p.tz # Use timezone from data feed if av
ailable
)

 # Example 2: Trigger 10 sessions (days for daily data) after s
trategy starts
 # self.add_timer(when=bt.timer.SESSION_START, offset=datetime.
timedelta(days=10))

 # Example 3: Trigger at a specific time (for intraday data)
 # Ensure tzdata is provided if using specific time
 # try:
 # tz = self.data0.p.tz
 # target_time = datetime.time(15, 30) # 3:30 PM
 # self.add_timer(when=target_time, tzdata=tz)
 # except AttributeError:
 # self.log("Timezone info not available on data feed for t
imed timer.")

Chapter 7: Advanced Strategy Features 48

 def notify_timer(self, timer, when, *args, **kwargs):
 # This method is called when a timer created by add_timer trig
gers
 self.log(f'TIMER TRIGGERED: Timer Ref: {timer}, Datetime: {whe
n.isoformat()}')

 # Example: Log portfolio value on timer trigger
 portfolio_value = self.broker.get_value()
 self.log(f'Periodic Check - Portfolio Value: {portfolio_value:
.2f}')

 # You could perform rebalancing or other time-based logic here

 def log(self, txt, dt=None):
 # Use datetime for timer precision if available, else date
 dt = dt or self.datas[0].datetime.datetime(0) if hasattr(self.
datas[0].datetime, 'datetime') else self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()}, {txt}')

 def next(self):
 # Regular bar processing continues as normal
 pass

• Key add_timer parameters: when (trigger condition - can be
bt.timer.SESSION_START, SESSION_END, specific datetime.time,
datetime.date, or other conditions), offset (timedelta delay), repeat (timedelta
interval for recurring timers), tzdata (timezone for time-based triggers, often
obtained from the data feed like self.data.p.tz).

• The notify_timer method receives the timer object itself and the exact when
datetime the timer triggered.

7.4. Accessing Analyzer Results within stop()

Analyzers are powerful backtrader tools used to calculate overall performance metrics
and statistics for a backtest run. They are added to the Cerebro engine, typically outside
the strategy code (likely via the Backtester app UI).

Common Analyzers include:

• bt.analyzers.SharpeRatio: Calculates the Sharpe Ratio (and other related
metrics).

• bt.analyzers.DrawDown: Calculates maximum drawdown statistics.
• bt.analyzers.TradeAnalyzer: Provides detailed statistics about individual

trades (win rate, profit factor, lengths, etc.).

Chapter 7: Advanced Strategy Features 49

• bt.analyzers.SQN: Calculates Van Tharp’s System Quality Number.

While the main results are usually displayed by the Backtester app after a run, your
strategy can access the results calculated by these analyzers within its stop() method
(which runs once at the very end of the backtest).

Python

--- Assumed setup outside the strategy ---
cerebro = bt.Cerebro()
cerebro.addstrategy(AnalyzerAccessDemo)
... add data ...
cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='mysharpe')
cerebro.addanalyzer(bt.analyzers.TradeAnalyzer, _name='mytrades')
results = cerebro.run()

--- Inside your strategy class ---
import backtrader as bt

class AnalyzerAccessDemo(bt.Strategy):
 # ... __init__, next, log, notify_order etc ...

 def stop(self):
 print('--- Strategy Stopped ---') # Use print in stop, as log
might rely on data datetime

 # Access analyzers by the name given during addanalyzer ('_nam
e')
 # Use self.analyzers.getbyname to safely handle missing analyz
ers
 sharpe_analyzer = self.analyzers.getbyname('mysharpe')
 trade_analyzer = self.analyzers.getbyname('mytrades')

 if sharpe_analyzer:
 # get_analysis() returns a dictionary-like object
 analysis_sharpe = sharpe_analyzer.get_analysis()
 sharpe_ratio = analysis_sharpe.get('sharperatio', 'N/A') #
Use .get for safety
 print(f'Analyzer Result - Sharpe Ratio: {sharpe_ratio}')
 else:
 print('SharpeRatio Analyzer not found.')

 if trade_analyzer:
 analysis_trades = trade_analyzer.get_analysis()
 # Print some results from TradeAnalyzer (it returns a comp
lex dictionary)
 if analysis_trades and analysis_trades.total and analysis_

Chapter 7: Advanced Strategy Features 50

trades.total.closed > 0:
 win_total = analysis_trades.won.total
 loss_total = analysis_trades.lost.total
 total_closed = analysis_trades.total.closed
 win_rate = (win_total / total_closed) * 100 if total_
closed else 0
 pnl_net = analysis_trades.pnl.net.total
 avg_win = analysis_trades.won.pnl.average if win_tota
l > 0 else 0
 avg_loss = analysis_trades.lost.pnl.average if loss_t
otal > 0 else 0
 print(f'Analyzer Result - Trades Closed: {total_close
d}')
 print(f'Analyzer Result - Win Rate: {win_rate:.2f}%')
 print(f'Analyzer Result - Net PnL: {pnl_net:.2f}')
 print(f'Analyzer Result - Avg Win: {avg_win:.2f}, Avg
Loss: {avg_loss:.2f}')
 else:
 print('Analyzer Result - Trade Analysis: No closed tr
ades found.')
 else:
 print('TradeAnalyzer not found.')

 # Minimal methods needed for the example to be conceptually comple
te
 def __init__(self): pass
 def next(self): pass
 def log(self, txt, dt=None): # Basic log for conceptual clarity
 dt = dt or self.datas[0].datetime.date(0)
 current_timestamp = self.datas[0].datetime.datetime(0).strftim
e("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetime')
else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

Accessing analyzers in stop() allows for custom logging or final calculations based on the
overall backtest performance metrics generated by backtrader.

7.5. Handling Multiple Timeframes (Resampling)

Strategies can benefit from analyzing data on multiple timeframes simultaneously (e.g.,
using a daily trend filter for an hourly entry signal). backtrader handles this via
resampling.

The setup typically involves:

11. Adding the primary (lower timeframe) data feed to Cerebro.

Chapter 7: Advanced Strategy Features 51

12. Telling Cerebro to create a new, resampled data feed at the higher timeframe using
cerebro.resampledata(datafeed, timeframe=bt.TimeFrame.Days,
compression=1). This new feed is added to self.datas.

Inside the strategy:

• self.data0 (or self.data): Refers to the original, lower timeframe data (e.g.,
hourly).

• self.data1: Refers to the resampled, higher timeframe data (e.g., daily).
• next() is called according to the lower timeframe (self.data0).
• When accessing the higher timeframe data (self.data1.close[0]), it provides

the value from the most recently completed higher timeframe bar.

Python

import backtrader as bt

class MultiTimeFrameDemoStrategy(bt.Strategy):
 params = (('ema_period_daily', 50),)

 def __init__(self):
 # self.data0 is the primary (e.g., hourly) data feed
 self.primary_close = self.data0.close
 self.log(f'Primary data feed timeframe: {self.data0.p.name} -
{self.data0.p.timeframe._name}')

 # Check if the second data feed (resampled daily) exists
 if len(self.datas) > 1:
 self.daily_close = self.data1.close
 self.log(f'Secondary data feed timeframe: {self.data1.p.na
me} - {self.data1.p.timeframe._name}')

 # Calculate indicator on the daily data (self.data1)
 self.daily_ema = bt.indicators.ExponentialMovingAverage(
 self.data1.close, # Use the resampled data feed
 period=self.p.ema_period_daily
)
 else:
 self.log("Daily resampled data feed (data1) not found!")
 self.daily_close = None
 self.daily_ema = None # Cannot calculate without daily dat
a

 def log(self, txt, dt=None):
 # Use primary (e.g., hourly) data's datetime for logging times
tamp

Chapter 7: Advanced Strategy Features 52

 dt = dt or self.datas[0].datetime.datetime(0) if hasattr(self.
datas[0].datetime, 'datetime') else self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()}, {txt}')

 def next(self):
 # This runs on every primary (e.g., hourly) bar

 # Get current primary timeframe value
 current_primary_close = self.primary_close[0]

 # Proceed only if daily data and indicators are available
 if self.daily_close is None or self.daily_ema is None:
 self.log("Waiting for daily data/indicator setup...")
 return

 # Get the latest available daily close and daily EMA values
 # Note: These values only update when a daily bar completes
 current_daily_close = self.daily_close[0]
 current_daily_ema = self.daily_ema[0]

 # Check if daily EMA is ready (not NaN)
 if bt.numsupport.isnan(current_daily_ema):
 self.log("Daily EMA is still NaN.")
 return

 # Example Logic: Buy hourly dips only if daily close is above
daily EMA
 is_daily_uptrend = current_daily_close > current_daily_ema

 # Example hourly entry condition (replace with actual logic)
 hourly_buy_signal = self.primary_close[0] < self.primary_close
[-1] and self.primary_close[-1] < self.primary_close[-2] # Example: pr
ice fell 2 bars

 if not self.position:
 if is_daily_uptrend and hourly_buy_signal:
 self.log(f'Daily Trend UP (Close {current_daily_close
:.2f} > EMA {current_daily_ema:.2f}). Hourly Buy Signal at {current_pr
imary_close:.2f}')
 # self.buy() # Consider order placement
 elif not is_daily_uptrend:
 self.log(f'Daily Trend DOWN - Hourly signals ignored.
Daily Close {current_daily_close:.2f} <= EMA {current_daily_ema:.2f}')
 # else: handle position exit logic

7.6. Cheat-on-Close / Cheat-on-Open Execution

Chapter 7: Advanced Strategy Features 53

These are settings applied to the Cerebro engine, typically configured in the Backtester
app’s settings, not within the strategy code itself. They alter the default order execution
timing:

• cheat_on_open=True: Allows an order placed during bar N’s next() call to
potentially execute at the open of that same bar N. This assumes you could know the
open price and act instantaneously. Use with extreme caution, as it can easily
introduce look-ahead bias if your strategy logic implicitly uses information from bar
N that wouldn’t be known at the open.

• cheat_on_close=True: Allows an order placed during bar N’s next() call to
potentially execute at the close of that same bar N. This is useful for genuinely
simulating Market-on-Close (MOC) orders or strategies designed to trade exactly at
the closing price.

While not set in the strategy, understanding whether these settings are active in your
Backtester run is important, as they change the fundamental assumption about when
trades occur relative to signals. If your strategy relies on MOC execution, ensure cheat-on-
close is enabled in the Backtester settings.

7.7. Running Multiple Strategies Concurrently

backtrader allows running multiple, independent strategies simultaneously within a
single backtest run using the same data and broker simulation. This is configured by adding
multiple strategy classes to Cerebro (e.g., cerebro.addstrategy(StrategyA);
cerebro.addstrategy(StrategyB)), likely managed via the Backtester UI allowing
selection/addition of multiple strategies for a single run.

• Independence: Each strategy instance maintains its own parameters and internal
state. StrategyA’s next() call doesn’t directly affect StrategyB’s next() call.

• Shared Broker: All strategies share the same simulated broker account. Orders
from all strategies affect the single cash balance and combined positions. This allows
testing portfolio effects or interactions through the shared capital pool.

• Use Cases: Comparing strategies side-by-side, running different strategies on
different data feeds within the same backtest (if multiple feeds are loaded), or
simulating a portfolio composed of multiple independent signal generators.

Your individual strategy code doesn’t usually need modification to run concurrently, but its
performance might be affected by the actions of other strategies depleting or increasing the
shared cash. Ensure your cash management and sizing logic (if dynamic) accounts for this
shared environment if running multiple strategies.

Chapter 8: Strategy Examples for Backtester 54

Chapter 8: Strategy Examples for Backtester

Here are complete strategy examples you can use as templates or starting points within the
Backtester application.

8.1. SMA Crossover using bt.indicators.SimpleMovingAverage

This classic strategy uses two built-in backtrader Simple Moving Averages.

Python

import backtrader as bt

class SmaCrossStrategy(bt.Strategy):
 params = (
 ('pfast', 10), # Period for the fast SMA
 ('pslow', 30), # Period for the slow SMA
 ('printlog', True), # Enable/disable logging
)

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.order = None # To track pending orders

 # Instantiate the SMAs using backtrader's built-in indicator
 self.sma_fast = bt.indicators.SimpleMovingAverage(
 self.datas[0], period=self.p.pfast)
 self.sma_slow = bt.indicators.SimpleMovingAverage(
 self.datas[0], period=self.p.pslow)

 # Use CrossOver indicator for signal detection
 self.crossover = bt.indicators.CrossOver(self.sma_fast, self.s
ma_slow)

 def log(self, txt, dt=None, doprint=False):
 ''' Logging function for this strategy'''
 if self.params.printlog or doprint:
 dt = dt or self.datas[0].datetime.date(0)
 current_timestamp = self.datas[0].datetime.datetime(0).str
ftime("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetim
e') else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

 def notify_order(self, order):
 if order.status in [order.Submitted, order.Accepted]:
 return # Do nothing for pending orders

Chapter 8: Strategy Examples for Backtester 55

 if order.status in [order.Completed]:
 if order.isbuy():
 self.log(f'BUY EXECUTED, Price: {order.executed.price:
.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f}
')
 elif order.issell():
 self.log(f'SELL EXECUTED, Price: {order.executed.price
:.2f}, Cost: {order.executed.value:.2f}, Comm {order.executed.comm:.2f
}')

 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log(f'Order Canceled/Margin/Rejected Ref: {order.ref}
')

 # Reset order tracking after final state
 self.order = None

 def next(self):
 # Log closing price
 self.log(f'Close: {self.dataclose[0]:.2f}, FastSMA: {self.sma_
fast[0]:.2f}, SlowSMA: {self.sma_slow[0]:.2f}')

 # Check if an order is pending
 if self.order:
 return

 # Check if we are in the market
 if not self.position:
 # Buy signal: Fast SMA crosses above Slow SMA (crossover >
0)
 if self.crossover[0] > 0:
 self.log(f'BUY CREATE, Signal Price={self.dataclose[0]
:.2f}')
 self.order = self.buy()
 else: # We are in the market
 # Sell signal: Fast SMA crosses below Slow SMA (crossover
< 0)
 if self.crossover[0] < 0:
 self.log(f'SELL CREATE (CLOSE), Signal Price={self.dat
aclose[0]:.2f}')
 self.order = self.close() # Close the existing positio
n

8.2. RSI Threshold using bt.talib.RSI (Wrapper)

Chapter 8: Strategy Examples for Backtester 56

This strategy uses the backtrader wrapper for TA-Lib’s RSI.

Python

class RsiThresholdStrategy(bt.Strategy):
 params = (
 ('rsi_period', 14),
 ('rsi_lower', 30), # Lower threshold for buy
 ('rsi_upper', 70), # Upper threshold for sell
)

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.order = None
 self.required_lookback = self.p.rsi_period + 1 # Min data for
RSI calc
 self.rsi = bt.talib.RSI(self.dataclose, timeperiod=self.p.rsi_
period)

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()}, {txt}')

 def notify_order(self, order):
 # Basic notification logic (same as previous example)
 if order.status in [order.Submitted, order.Accepted]: return
 if order.status in [order.Completed]:
 exec_type = 'BUY' if order.isbuy() else 'SELL'
 self.log(f'{exec_type} EXECUTED, Price: {order.executed.pr
ice:.2f}')
 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log('Order Canceled/Margin/Rejected')
 self.order = None

 def next(self):
 if self.order: # Check if an order is pending
 return

 # Access RSI values directly from the indicator line
 # Backtrader handles the minimum period. self.rsi[0] is the *c
urrent* value.
 current_rsi = self.rsi[0]
 # self.rsi[-1] is the *previous* bar's RSI value
 previous_rsi = self.rsi[-1]

Chapter 8: Strategy Examples for Backtester 57

 # Optional: Check if RSI values are ready (might be NaN initia
lly)
 # This check might not be strictly necessary if the logic hand
les NaN implicitly,
 # but it can prevent logs/trades on invalid data.
 try:
 # Check both current and previous are valid numbers
 if np.isnan(current_rsi) or np.isnan(previous_rsi):
 # self.log(f"RSI not ready. Current: {current_rsi}, Pr
evious: {previous_rsi}") # Optional log
 return
 except TypeError:
 # Handles cases where the values might not even be floats
yet (very early bars)
 # self.log("RSI not ready (TypeError check).") # Optional
log
 return

 # Log current close and RSI
 self.log(f'Close={self.dataclose[0]:.2f}, RSI={current_rsi:.2f
}') # Removed Prev RSI log for brevity

 # Strategy Logic (using the indicator's values)
 if not self.position: # If not in the market
 # Buy Condition: RSI crosses below lower threshold
 if current_rsi < self.p.rsi_lower and previous_rsi >= self
.p.rsi_lower:
 self.log(f'BUY CREATE (RSI < {self.p.rsi_lower}), RSI=
{current_rsi:.2f}')
 self.order = self.buy()
 else: # If in the market
 # Sell Condition: RSI crosses above upper threshold
 if current_rsi > self.p.rsi_upper and previous_rsi <= sel
f.p.rsi_upper:
 self.log(f'SELL CREATE (RSI > {self.p.rsi_upper}), RSI
={current_rsi:.2f}')
 self.order = self.close() # Close position

8.3. Bollinger Band Strategy using bt.talib.BBANDS (Wrapper)

Uses the backtrader wrapper for TA-Lib’s Bollinger Bands.

Python

class BollingerBandStrategy(bt.Strategy):
 params = (
 ('bb_period', 20),

Chapter 8: Strategy Examples for Backtester 58

 ('bb_dev', 2.0), # Number of standard deviations
)

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.order = None

 # --- Define Bollinger Bands using Backtrader's indicator ---
 self.bbands = bt.indicators.BollingerBands(
 self.datas[0], # You can pass the data feed directly
 period=self.p.bb_period,
 devfactor=self.p.bb_dev
 # movav=bt.indicators.SimpleMovingAverage # Default is SMA
, explicitly set if needed
)

 def log(self, txt, dt=None):
 dt = dt or self.datas[0].datetime.date(0)
 print(f'{dt.isoformat()}, {txt}')

 def notify_order(self, order):
 # Basic notification logic
 if order.status in [order.Submitted, order.Accepted]: return
 if order.status in [order.Completed]:
 exec_type = 'BUY' if order.isbuy() else 'SELL'
 self.log(f'{exec_type} EXECUTED, Price: {order.executed.pr
ice:.2f}')
 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log('Order Canceled/Margin/Rejected')
 self.order = None

 def next(self):
 if self.order: return # Pending order check

 # Access band values directly from the indicator lines
 # [0] gets the current bar's value
 upper_band = self.bbands.lines.top[0]
 middle_band = self.bbands.lines.mid[0]
 lower_band = self.bbands.lines.bot[0]

 # Check if bands are calculated (use middle band as proxy)
 # Backtrader handles the minimum period internally
 if np.isnan(middle_band) or np.isnan(upper_band) or np.isnan(l
ower_band):
 # self.log("BBands not ready (NaN)...") # Optional log

Chapter 8: Strategy Examples for Backtester 59

 return

 # Log current close and band values
 self.log(f'Close={self.dataclose[0]:.2f}, LowerB={lower_band:.
2f}, UpperB={upper_band:.2f}')

 # Strategy Logic using indicator lines
 if not self.position:
 # Buy Condition: Price touches or crosses below lower band
 if self.dataclose[0] <= lower_band:
 self.log(f'BUY CREATE (Close <= Lower Band), Close={se
lf.dataclose[0]:.2f}, LowerB={lower_band:.2f}')
 self.order = self.buy()
 else: # In the market
 # Sell Condition: Price touches or crosses above upper ban
d (simple exit)
 # Alternative: Exit if price crosses back above middle ban
d (mean reversion target)
 # if self.dataclose[0] >= middle_band:
 # self.log(f'SELL CREATE (Close >= Middle Band), Close=
{self.dataclose[0]:.2f}, MiddleB={middle_band:.2f}')
 # self.order = self.close()

 if self.dataclose[0] >= upper_band:
 self.log(f'SELL CREATE (Close >= Upper Band), Close={s
elf.dataclose[0]:.2f}, UpperB={upper_band:.2f}')
 self.order = self.close() # Close position

8.4. MACD Strategy using bt.talib.MACD (Wrapper)

Uses the backtrader wrapper for TA-Lib’s MACD.

Python

import backtrader as bt

class MacdWrapperStrategy(bt.Strategy):
 params = dict(
 macd_fast=12,
 macd_slow=26,
 macd_signal=9,
 printlog=True,
)

 def __init__(self):
 self.dataclose = self.data.close
 self.order = None

Chapter 8: Strategy Examples for Backtester 60

 # TA-Lib MACD: outputs are .macd, .macdsignal, .macdhist
 self.macd = bt.talib.MACD(
 self.dataclose,
 fastperiod=self.p.macd_fast,
 slowperiod=self.p.macd_slow,
 signalperiod=self.p.macd_signal,
)

 # Expose the three lines
 self.macd_line = self.macd.macd
 self.signal_line = self.macd.macdsignal
 self.hist_line = self.macd.macdhist

 # Detect crossovers between MACD and signal
 self.mcross = bt.indicators.CrossOver(self.macd_line, self.sig
nal_line)

 def log(self, txt, dt=None, doprint=False):
 if self.p.printlog or doprint:
 dt = dt or self.datas[0].datetime.datetime(0)
 timestamp = dt.strftime("%Y-%m-%d %H:%M:%S")
 print(f'{timestamp}, {txt}')

 def notify_order(self, order):
 # ignore submissions/acceptances
 if order.status in [order.Submitted, order.Accepted]:
 return

 # execution
 if order.status == order.Completed:
 etype = 'BUY' if order.isbuy() else 'SELL'
 self.log(f'{etype} EXECUTED, '
 f'Price: {order.executed.price:.2f}, '
 f'Size: {order.executed.size}')
 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log(f'Order Canceled/Margin/Rejected Ref: {order.ref}
')

 # reset order flag
 self.order = None

 def next(self):
 # current values
 mc = self.macd_line[0]

Chapter 8: Strategy Examples for Backtester 61

 sg = self.signal_line[0]
 hi = self.hist_line[0]
 price = self.dataclose[0]

 self.log(f'Close={price:.2f}, MACD={mc:.2f}, '
 f'Signal={sg:.2f}, Hist={hi:.2f}')

 # if an order is pending, skip
 if self.order:
 return

 # no position look to buy
 if not self.position:
 if self.mcross[0] > 0:
 self.log('BUY CREATE (MACD crossed above Signal)')
 self.order = self.buy()

 # in the market look to sell/close
 else:
 if self.mcross[0] < 0:
 self.log('SELL CREATE (MACD crossed below Signal)')
 self.order = self.close()

8.5. ATR Based Stop-Loss Implementation using bt.talib.ATR (Wrapper)

Combines a simple entry (SMA cross) with a stop-loss based on the Average True Range
(ATR) using the bt.talib wrapper.

Python

class AtrStopLossWrapperStrategy(bt.Strategy):
 params = (
 ('sma_period', 20), # For entry signal
 ('atr_period', 14), # For stop loss calculation
 ('atr_multiplier', 2.0), # Multiplier for ATR stop distance
 ('printlog', True),
)

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.datahigh = self.datas[0].high
 self.datalow = self.datas[0].low
 self.order = None
 self.stop_price = None # Variable to store the calculated stop
price

 # Entry signal indicator

Chapter 8: Strategy Examples for Backtester 62

 self.sma = bt.indicators.SimpleMovingAverage(self.data, period
=self.p.sma_period)

 # ATR indicator using the wrapper
 self.atr = bt.talib.ATR(self.datahigh, self.datalow, self.data
close,
 timeperiod=self.p.atr_period)

 def log(self, txt, dt=None, doprint=False):
 if self.params.printlog or doprint:
 dt = dt or self.datas[0].datetime.date(0)
 current_timestamp = self.datas[0].datetime.datetime(0).str
ftime("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetim
e') else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

 def notify_order(self, order):
 if order.status in [order.Submitted, order.Accepted]: return

 if order.status in [order.Completed]:
 exec_type = 'BUY' if order.isbuy() else 'SELL'
 self.log(f'{exec_type} EXECUTED, Price: {order.executed.pr
ice:.2f}, Size: {order.executed.size}')

 if order.isbuy(): # If buy order completed, calculate and
set stop price
 current_atr = self.atr[0] # Get ATR value on execution
bar
 if current_atr is not None and not np.isnan(current_at
r) and current_atr > 0:
 self.stop_price = order.executed.price - current_a
tr * self.p.atr_multiplier
 self.log(f'Entry ATR={current_atr:.2f}, Stop Price
set to {self.stop_price:.2f}')
 else:
 self.log(f'Could not calculate ATR for stop loss o
n execution bar (ATR={current_atr}), stop not set.')
 self.stop_price = None # Cannot set stop
 elif order.issell(): # If sell order completed (closing tr
ade), clear stop price
 if self.stop_price is not None: # Log only if a stop
was active
 self.log(f'Position closed, clearing stop price
{self.stop_price:.2f}')
 self.stop_price = None

Chapter 8: Strategy Examples for Backtester 63

 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log(f'Order Canceled/Margin/Rejected Ref: {order.ref}
')
 # If entry order failed, ensure stop price is not set
 if self.stop_price is not None and order.ref == self.order
.ref: # Check if it was the tracked order
 self.stop_price = None

 self.order = None # Reset pending order flag

 def next(self):
 if self.order: return # Order pending

 # Check stop loss first if in a long position
 if self.position.size > 0 and self.stop_price is not None:
 # Use low of current bar for stop check for more realistic
fill
 if self.datalow[0] <= self.stop_price:
 self.log(f'STOP LOSS HIT: Low={self.datalow[0]:.2f} <=
Stop={self.stop_price:.2f}')
 self.order = self.close() # Create close order
 return # Exit next() after placing close order

 # Entry Logic (if not in position and no stop loss triggered)
 if not self.position:
 # Simple SMA entry: Buy if close crosses above SMA
 if self.dataclose[-1] < self.sma[-1] and self.dataclose[0]
> self.sma[0]:
 self.log(f'BUY CREATE (SMA Cross), Close={self.dataclo
se[0]:.2f}')
 self.order = self.buy()
 # Stop price will be calculated in notify_order after
execution

8.6. Candlestick Pattern Entry using bt.talib.CDLDOJI (Wrapper)

Enters on a Doji pattern detection using the bt.talib wrapper.

Python

import backtrader as bt

class CandlestickWrapperStrategy(bt.Strategy):
 params = (
 ('hold_period', 5), # How many bars to hold after entry
 ('printlog', True),

Chapter 8: Strategy Examples for Backtester 64

)

 def __init__(self):
 self.o = self.data.open
 self.h = self.data.high
 self.l = self.data.low
 self.c = self.data.close
 self.order = None
 self.entry_bar = None # To track when we entered

 # Instantiate the pattern detection using the wrapper
 self.doji = bt.talib.CDLDOJI(self.o, self.h, self.l, self.c)
 # Try another pattern: e.g., Hammer
 # self.hammer = bt.talib.CDLHAMMER(self.o, self.h, self.l, sel
f.c)

 def log(self, txt, dt=None, doprint=False):
 if self.params.printlog or doprint:
 dt = dt or self.datas[0].datetime.date(0)
 current_timestamp = self.datas[0].datetime.datetime(0).str
ftime("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetim
e') else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

 def notify_order(self, order):
 # Basic notification logic
 if order.status in [order.Submitted, order.Accepted]: return
 if order.status in [order.Completed]:
 exec_type = 'BUY' if order.isbuy() else 'SELL'
 self.log(f'{exec_type} EXECUTED, Price: {order.executed.pr
ice:.2f}, Size: {order.executed.size}')
 if order.isbuy():
 self.entry_bar = len(self) # Record entry bar index
 else: # Sell executed (closed position)
 self.entry_bar = None
 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log(f'Order Canceled/Margin/Rejected Ref: {order.ref}
')
 self.order = None

 def next(self):
 if self.order: return

 # Check pattern result from the wrapper line
 # Note: TA-Lib patterns return 0 (no), 100 (bullish), -100 (be

Chapter 8: Strategy Examples for Backtester 65

arish)
 # The wrapper line evaluates non-zero as True in Python boolea
n context
 is_doji_detected = self.doji[0] != 0 # Check if non-zero
 # is_hammer_detected = self.hammer[0] == 100 # Check specific
bullish value

 # Log pattern detection
 if is_doji_detected:
 self.log(f"Doji Pattern Detected on bar {len(self)}")

 # Strategy Logic
 if not self.position:
 # Buy Condition: Doji pattern detected on the current bar
 if is_doji_detected:
 self.log(f'BUY CREATE (Doji Detected), Close={self.c[
0]:.2f}')
 self.order = self.buy()
 else: # In position, check exit condition
 if self.entry_bar is not None and len(self) >= (self.entr
y_bar + self.p.hold_period):
 self.log(f'SELL CREATE (Holding Period Met), Close={s
elf.c[0]:.2f}')
 self.order = self.close()

8.7. Multi-Indicator Strategy (e.g., ADX + RSI using bt.talib Wrappers)

Combines ADX (trend strength) and RSI (momentum/overbought/oversold) using
bt.talib wrappers.

Python

class AdxRsiWrapperStrategy(bt.Strategy):
 params = (
 ('adx_period', 14),
 ('adx_threshold', 25), # Minimum ADX value to consider a trend
 ('rsi_period', 14),
 ('rsi_overbought', 70), # RSI level to avoid buying / potentia
lly sell
 ('rsi_oversold', 30), # RSI level for potential buy signal (if
trend allows)
 ('printlog', True),
)

 def __init__(self):
 self.dataclose = self.datas[0].close
 self.datahigh = self.datas[0].high

Chapter 8: Strategy Examples for Backtester 66

 self.datalow = self.datas[0].low
 self.order = None

 # Instantiate indicators using wrappers
 self.adx = bt.talib.ADX(self.datahigh, self.datalow, self.data
close,
 timeperiod=self.p.adx_period)
 self.rsi = bt.talib.RSI(self.dataclose, timeperiod=self.p.rsi_
period)

 def log(self, txt, dt=None, doprint=False):
 if self.params.printlog or doprint:
 dt = dt or self.datas[0].datetime.date(0)
 current_timestamp = self.datas[0].datetime.datetime(0).str
ftime("%Y-%m-%d %H:%M:%S") if hasattr(self.datas[0].datetime, 'datetim
e') else dt.isoformat()
 print(f'{current_timestamp}, {txt}')

 def notify_order(self, order):
 # Basic notification logic
 if order.status in [order.Submitted, order.Accepted]: return
 if order.status in [order.Completed]:
 exec_type = 'BUY' if order.isbuy() else 'SELL'
 self.log(f'{exec_type} EXECUTED, Price: {order.executed.pr
ice:.2f}, Size: {order.executed.size}')
 elif order.status in [order.Canceled, order.Margin, order.Reje
cted]:
 self.log(f'Order Canceled/Margin/Rejected Ref: {order.ref}
')
 self.order = None

 def next(self):
 # Get current indicator values
 current_adx = self.adx[0]
 current_rsi = self.rsi[0]

 # Check if indicators are valid (backtrader handles min period
for wrappers)
 # We might still get NaN if underlying data has NaN, but less
common
 if np.isnan(current_adx) or np.isnan(current_rsi):
 self.log("ADX or RSI is NaN, waiting...")
 return

 self.log(f'Close={self.dataclose[0]:.2f}, ADX={current_adx:.2f
}, RSI={current_rsi:.2f}')

Chapter 8: Strategy Examples for Backtester 67

 if self.order: return # Order pending

 # --- Strategy Logic ---
 is_trending = current_adx > self.p.adx_threshold

 if not self.position:
 # Buy Condition: Trend is active (ADX > threshold) AND RSI
is below overbought level
 if is_trending and current_rsi < self.p.rsi_overbought:
 # Optional: Add another condition like RSI crossing u
p from oversold
 # if self.rsi[-1] < self.p.rsi_oversold and current_r
si >= self.p.rsi_oversold:
 self.log(f'BUY CREATE (ADX Trending & RSI OK), ADX={c
urrent_adx:.2f}, RSI={current_rsi:.2f}')
 self.order = self.buy()
 else: # In position
 # Sell Condition: Trend weakens (ADX falls below threshol
d) OR RSI becomes overbought
 if not is_trending or current_rsi > self.p.rsi_overbought
:
 reason = "Trend Weakened" if not is_trending else "RS
I Overbought"
 self.log(f'SELL CREATE ({reason}), ADX={current_adx:.
2f}, RSI={current_rsi:.2f}')
 self.order = self.close()

These examples demonstrate how to combine different elements discussed in the manual
using backtrader’s built-in indicators and the convenient bt.talib wrappers.
Remember to adapt, test, and refine them for your specific trading goals in Backtester.

Appendix 68

Appendix

A.1. Strategy Class Method Quick Reference

These are the primary methods you define or override within your custom strategy class
(inheriting from bt.Strategy):

• __init__(self):

– Called: Once, when the strategy object is created before backtesting begins.
– Purpose: Initialize indicators, define parameters (params), store data line

references, set up initial state variables.
• start(self):

– Called: Once, at the very beginning of the backtest run, before any data
processing.

– Purpose: Perform initial setup actions that don’t rely on data minimum
periods. Often left unimplemented if __init__ suffices.

• prenext(self):

– Called: For each bar before all indicators have met their minimum
calculation periods.

– Purpose: Logic that needs to run even before indicators produce valid
output. Often left unimplemented.

• nextstart(self):

– Called: Exactly once, on the first bar where all indicators have met their
minimum periods.

– Purpose: Execute one-time logic precisely when indicators become valid.
Default behavior is to call next().

• next(self):

– Called: For every bar after the minimum period has been met.
– Purpose: The main engine of the strategy. Contains the core logic for

checking conditions, analyzing indicator values, and generating trade orders
(buy/sell/close).

• stop(self):

– Called: Once, after the last bar has been processed by next().
– Purpose: Perform final calculations, cleanup, access Analyzer results

(self.analyzers).
• log(self, txt, dt=None, ...):

– Called: By you from within other strategy methods (e.g., next,
notify_order).

– Purpose: Standardized way to print output and log events during the
backtest. Implementation is user-defined.

Appendix 69

• notify_order(self, order):

– Called: By backtrader whenever an order’s status changes.
– Purpose: Track order lifecycle (Submitted, Accepted, Completed, Rejected,

etc.), access execution details (order.executed), manage pending order
state.

• notify_trade(self, trade):

– Called: By backtrader when a trade is opened and again when it is closed.
– Purpose: Track completed trades, access Profit/Loss (trade.pnl,

trade.pnlcomm), log trade statistics.
• notify_timer(self, timer, when, *args, **kwargs):

– Called: By backtrader when a timer created with add_timer triggers.
– Purpose: Execute time-based logic (e.g., periodic rebalancing).

Key methods called from your strategy:

• self.buy(...): Creates a buy order.
• self.sell(...): Creates a sell order.
• self.close(...): Creates an order to close the current position on the primary

data feed.
• self.cancel(order): Requests cancellation of a specific pending order.
• self.add_timer(...): Creates a timer to trigger notify_timer based on time

conditions.
• self.broker.get_cash(): Gets the current cash balance.
• self.broker.get_value(): Gets the current total portfolio value.

A.2. Order Status Reference

The order.status attribute within notify_order(order) indicates the current state of
an order. Common statuses (accessible via bt.Order.StatusName or
order.StatusName):

• Created: Order instance created internally (rarely seen by user).
• Submitted: Order submitted to the broker simulation.
• Accepted: Order accepted by the broker simulation and is now working (e.g.,

waiting for fill).
• Partial: Order has been partially filled. order.executed holds details of the last

partial fill.
• Completed: Order has been fully filled. order.executed holds details of the final

fill.
• Canceled (or Cancelled): Order was successfully canceled by a self.cancel()

request.

Appendix 70

• Expired: Order expired based on its valid parameter (e.g., Day order, GTD) before
being filled.

• Margin: Order rejected or canceled due to insufficient funds or margin
requirements.

• Rejected: Order rejected by the broker simulation for other reasons (e.g., invalid
parameters, size).

A.3. Trade Attributes Reference

The trade object passed to notify_trade(trade) contains information about a position
lifecycle (entry to exit). Key attributes, especially relevant when trade.isclosed is True:

• ref: Unique reference ID for the trade.
• data: The data feed associated with the trade (useful for multi-data strategies). Use

trade.data._name for the data name string.
• size: The size of the position that was opened/closed.
• price: The average entry price of the trade.
• value: The initial absolute monetary value of the position at entry (price *

size).
• commission: Total commission paid for the round-trip trade (entry + exit).
• pnl: Gross Profit or Loss for the trade (excludes commission).
• pnlcomm: Net Profit or Loss for the trade (includes commission). This is usually the

most important P&L figure.
• baropen: Index of the bar on which the trade was opened.
• barclose: Index of the bar on which the trade was closed.
• barlen: Duration of the trade in bars (barclose - baropen).
• dtopen: Datetime the trade was opened.
• dtclose: Datetime the trade was closed.
• isopen: Boolean, True if the notification is for the trade opening.
• isclosed: Boolean, True if the notification is for the trade closing.
• justopened: Boolean, True only on the very first notification for the trade (when it

opens).

