Most backtests are built on historical data under the implicit assumption that the future will resemble the past. While useful, this assumption breaks down during rare but extreme market events—black swans, liquidity crises, correlation spikes, or macroeconomic regime changes. To address these risks, experienced quantitative traders go beyond standard performance metrics by incorporating stress testing and scenario analysis into their workflows.
This article outlines these two complementary approaches and how to use them to assess the robustness of trading systems. This is the final layer of a complete risk management framework, designed to test the resilience of your risk metrics, position sizing, and diversification strategies.
Traditional backtesting, even with robust techniques like walk-forward optimization, has inherent blind spots:
Stress testing and scenario analysis aim to bridge this gap by challenging a strategy with conditions it has never encountered.
Stress testing involves deliberately shocking key input variables or assumptions to measure their effect on portfolio performance. It is a quantitative “what-if” exercise focused on sensitivity to extreme but plausible conditions.
backtrader
ImplementationVolatility Shock: This test inflates volatility
to simulate a fear-driven market. It’s a critical test for strategies
that rely on stable volatility assumptions. You can do this by manually
editing your data feed before passing it to backtrader
.
import pandas as pd
import numpy as np
# Assume df is a pandas DataFrame from yfinance
'returns'] = df['Close'].pct_change()
df['vol_multiplier'] = np.random.normal(loc=1.5, scale=0.2, size=len(df)) # 50% increase, +/- 20%
df[
# Apply the shock to returns, then rebuild the price series
'shocked_returns'] = df['returns'] * df['vol_multiplier']
df['Shocked_Close'] = (1 + df['shocked_returns']).cumprod() * df['Close'].iloc[0]
df[
# Now use df['Shocked_Close'] as your price data in backtrader
Correlation Breakdown: As we’ve discussed, diversification benefits vanish when correlations spike to 1. This stress test involves simulating this worst-case scenario. It is a key test for a diversified multi-asset portfolio.
Liquidity or Cost Shock: This evaluates a strategy’s robustness in less liquid markets or high-cost environments. It is a simple but effective test for systems with high turnover.
# Set a high commission and slippage (e.g., 1% commission, 2% slippage)
=0.01)
cerebro.broker.setcommission(commission0.02) cerebro.broker.set_slippage_perc(
Parameter Degradation: This test involves
running the strategy with non-optimal or even randomized parameter sets.
If performance degrades gracefully, the strategy is likely robust. If it
collapses, it may be overfit. backtrader
’s
cerebro.optstrategy
can be used to run a wide range of
parameters, including those far from the optimal point.
Scenario analysis evaluates how a strategy would perform under a specific, coherent market narrative—either historical or hypothetical. Unlike stress tests, which alter variables in isolation, scenario analysis simulates complete, complex events.
Historical Scenarios: The most straightforward form of scenario analysis. You select a specific period of market stress and run your backtest exclusively on that data. This is an excellent way to see how your strategy would have performed during real-world crises.
# Using your preferred yfinance data retrieval method
= yf.download(
df_crisis 'SPY',
='2008-08-01',
start='2009-02-01',
end=False
auto_adjust1, 1)
).droplevel(
= bt.feeds.PandasData(dataname=df_crisis)
data_crisis
cerebro.adddata(data_crisis)# Run the backtest on this data to see the strategy's crisis performance
Hypothetical Scenarios: This involves modeling events that haven’t happened but are plausible. For example, you could manually create a synthetic price series that simulates:
This is a more advanced technique that requires careful data manipulation but provides invaluable insights into your strategy’s true vulnerabilities.
An effective workflow integrates all these concepts into a clear, actionable process:
2008-2009
,
2020 COVID crash
, etc.) and on your own carefully
constructed hypothetical scenarios.Here’s a complete Python framework for stress testing, built using
backtrader
and yfinance
:
import backtrader as bt
import yfinance as yf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
import warnings
'ignore')
warnings.filterwarnings(
# Custom analyzer for reliable performance metrics
class CustomPerformanceAnalyzer(bt.analyzers.Analyzer):
= (('riskfreerate', 0.01),)
params
def __init__(self):
self.portfolio_values = []
self.trade_count = 0
def next(self):
self.portfolio_values.append(self.strategy.broker.getvalue())
def notify_trade(self, trade):
if trade.isclosed:
self.trade_count += 1
def get_analysis(self):
if len(self.portfolio_values) < 2:
return {'sharperatio': 0, 'total_return': 0, 'max_drawdown': 0}
# Calculate metrics
= []
returns = self.portfolio_values[0]
max_value = 0
max_drawdown
for i in range(1, len(self.portfolio_values)):
= (self.portfolio_values[i] / self.portfolio_values[i-1]) - 1
daily_return
returns.append(daily_return)
# Track drawdown
if self.portfolio_values[i] > max_value:
= self.portfolio_values[i]
max_value else:
= (max_value - self.portfolio_values[i]) / max_value
drawdown if drawdown > max_drawdown:
= drawdown
max_drawdown
if not returns:
return {'sharperatio': 0, 'total_return': 0, 'max_drawdown': 0}
= np.array(returns)
returns
# Calculate performance metrics
= (self.portfolio_values[-1] / self.portfolio_values[0]) - 1
total_return = np.mean(returns)
avg_daily_return = np.std(returns)
std_daily_return
# Annualize
= avg_daily_return * 252
annual_return = std_daily_return * np.sqrt(252)
annual_volatility
# Sharpe ratio
= (annual_return - self.params.riskfreerate) / annual_volatility if annual_volatility > 0 else 0
sharpe_ratio
return {
'sharperatio': sharpe_ratio,
'total_return': total_return,
'annual_return': annual_return,
'annual_volatility': annual_volatility,
'max_drawdown': max_drawdown,
'trade_count': self.trade_count,
'avg_daily_return': avg_daily_return,
'daily_volatility': std_daily_return
}
# Simple trend following strategy for testing
class TrendFollowingStrategy(bt.Strategy):
= (
params 'period', 50),
('stake', 1000),
(
)
def __init__(self):
self.sma = bt.indicators.SimpleMovingAverage(
self.data.close, period=self.params.period
)self.crossover = bt.indicators.CrossOver(self.data.close, self.sma)
def next(self):
if not self.position:
if self.crossover > 0:
= self.params.stake // self.data.close[0]
size self.buy(size=size)
else:
if self.crossover < 0:
self.sell(size=self.position.size)
# Multi-asset diversified strategy
class DiversifiedTrendStrategy(bt.Strategy):
= (
params 'period', 50),
('stake_per_asset', 2500),
(
)
def __init__(self):
self.smas = {}
self.crossovers = {}
for i, data in enumerate(self.datas):
self.smas[data] = bt.indicators.SimpleMovingAverage(
=self.params.period
data.close, period
)self.crossovers[data] = bt.indicators.CrossOver(
self.smas[data]
data.close,
)
def next(self):
for data in self.datas:
= self.getposition(data)
pos
if not pos:
if self.crossovers[data] > 0:
= self.params.stake_per_asset // data.close[0]
size self.buy(data=data, size=size)
else:
if self.crossovers[data] < 0:
self.sell(data=data, size=pos.size)
def download_data(tickers, start_date, end_date):
"""Download data for multiple tickers"""
= {}
data_feeds = {}
raw_data
for ticker in tickers:
try:
= yf.download(ticker, start=start_date, end=end_date, auto_adjust=False).droplevel(1, 1)
df if not df.empty:
= 'datetime'
df.index.name = bt.feeds.PandasData(dataname=df)
data_feeds[ticker] = df
raw_data[ticker] print(f"Downloaded data for {ticker}: {len(df)} rows")
except Exception as e:
print(f"Error downloading {ticker}: {e}")
return data_feeds, raw_data
def apply_volatility_shock(df, multiplier=1.5, shock_std=0.2):
"""Apply volatility shock to price data"""
= df.copy()
df_shocked
# Calculate returns
= df['Close'].pct_change().dropna()
returns
# Create volatility multiplier (random around the base multiplier)
42) # For reproducibility
np.random.seed(= np.random.normal(loc=multiplier, scale=shock_std, size=len(returns))
vol_multipliers = np.clip(vol_multipliers, 0.5, 3.0) # Reasonable bounds
vol_multipliers
# Apply shock to returns
= returns * vol_multipliers
shocked_returns
# Rebuild price series
= [df['Close'].iloc[0]]
shocked_prices for ret in shocked_returns:
-1] * (1 + ret))
shocked_prices.append(shocked_prices[
# Update all OHLC data proportionally
= np.array(shocked_prices[1:]) / df['Close'].iloc[1:].values
price_ratio
1:], 'Open'] *= price_ratio
df_shocked.loc[df_shocked.index[1:], 'High'] *= price_ratio
df_shocked.loc[df_shocked.index[1:], 'Low'] *= price_ratio
df_shocked.loc[df_shocked.index[1:], 'Close'] = shocked_prices[1:]
df_shocked.loc[df_shocked.index[1:], 'Adj Close'] = shocked_prices[1:]
df_shocked.loc[df_shocked.index[
return df_shocked
def apply_correlation_shock(data_dict, target_correlation=0.9):
"""Make all assets highly correlated (correlation breakdown scenario)"""
= {}
shocked_data
# Use SPY as the base asset
= data_dict['SPY'].copy()
base_data = base_data['Close'].pct_change().dropna()
base_returns
for ticker, df in data_dict.items():
= df.copy()
df_shocked
if ticker == 'SPY':
= df_shocked
shocked_data[ticker] continue
# Get original returns
= df['Close'].pct_change().dropna()
original_returns
# Create new returns that are correlated with SPY
42)
np.random.seed(= np.random.normal(0, 0.1, len(base_returns))
noise
# Weighted combination: target_correlation * SPY_returns + (1-target_correlation) * noise
= target_correlation * base_returns + (1 - target_correlation) * noise
correlated_returns
# Rebuild price series
= [df['Close'].iloc[0]]
shocked_prices for ret in correlated_returns:
-1] * (1 + ret))
shocked_prices.append(shocked_prices[
# Update OHLC data
= np.array(shocked_prices[1:]) / df['Close'].iloc[1:].values
price_ratio
1:], 'Open'] *= price_ratio
df_shocked.loc[df_shocked.index[1:], 'High'] *= price_ratio
df_shocked.loc[df_shocked.index[1:], 'Low'] *= price_ratio
df_shocked.loc[df_shocked.index[1:], 'Close'] = shocked_prices[1:]
df_shocked.loc[df_shocked.index[1:], 'Adj Close'] = shocked_prices[1:]
df_shocked.loc[df_shocked.index[
= df_shocked
shocked_data[ticker]
return shocked_data
def create_flash_crash_scenario(df, crash_day_index=100, crash_magnitude=-0.3, recovery_days=5):
"""Create a flash crash scenario"""
= df.copy()
df_crashed
if crash_day_index >= len(df):
= len(df) // 2
crash_day_index
# Apply crash
= 1 + crash_magnitude
crash_multiplier +1, df_crashed.columns.get_loc('Open')] *= crash_multiplier
df_crashed.iloc[crash_day_index:crash_day_index+1, df_crashed.columns.get_loc('High')] *= crash_multiplier
df_crashed.iloc[crash_day_index:crash_day_index+1, df_crashed.columns.get_loc('Low')] *= crash_multiplier
df_crashed.iloc[crash_day_index:crash_day_index+1, df_crashed.columns.get_loc('Close')] *= crash_multiplier
df_crashed.iloc[crash_day_index:crash_day_index+1, df_crashed.columns.get_loc('Adj Close')] *= crash_multiplier
df_crashed.iloc[crash_day_index:crash_day_index
# Gradual recovery over next few days
for i in range(1, recovery_days + 1):
if crash_day_index + i < len(df_crashed):
= 1 + (abs(crash_magnitude) * (1 - i/recovery_days) * 0.2)
recovery_factor + i:crash_day_index + i + 1, df_crashed.columns.get_loc('Open')] *= recovery_factor
df_crashed.iloc[crash_day_index + i:crash_day_index + i + 1, df_crashed.columns.get_loc('High')] *= recovery_factor
df_crashed.iloc[crash_day_index + i:crash_day_index + i + 1, df_crashed.columns.get_loc('Low')] *= recovery_factor
df_crashed.iloc[crash_day_index + i:crash_day_index + i + 1, df_crashed.columns.get_loc('Close')] *= recovery_factor
df_crashed.iloc[crash_day_index + i:crash_day_index + i + 1, df_crashed.columns.get_loc('Adj Close')] *= recovery_factor
df_crashed.iloc[crash_day_index
return df_crashed
def run_backtest(data_feeds, strategy_class, test_name, high_costs=False, **strategy_params):
"""Run a backtest with given parameters"""
= bt.Cerebro()
cerebro
# Add data feeds
if isinstance(data_feeds, dict):
for name, feed in data_feeds.items():
=name)
cerebro.adddata(feed, nameelse:
cerebro.adddata(data_feeds)
# Add strategy
**strategy_params)
cerebro.addstrategy(strategy_class,
# Set broker parameters
10000)
cerebro.broker.setcash(
if high_costs:
# High cost environment
=0.01) # 1% commission
cerebro.broker.setcommission(commission# Note: backtrader doesn't have built-in slippage, but you can implement it
else:
=0.001) # 0.1% commission
cerebro.broker.setcommission(commission
# Add analyzer
='performance')
cerebro.addanalyzer(CustomPerformanceAnalyzer, _name
# Run backtest
print(f"\nRunning {test_name}...")
print(f"Starting Portfolio Value: ${cerebro.broker.getvalue():.2f}")
= cerebro.run()
results = cerebro.broker.getvalue()
final_value
# Extract results
= results[0].analyzers.performance.get_analysis()
performance
print(f"Final Portfolio Value: ${final_value:.2f}")
print(f"Total Return: {performance['total_return']*100:.2f}%")
print(f"Sharpe Ratio: {performance['sharperatio']:.3f}")
print(f"Max Drawdown: {performance['max_drawdown']*100:.2f}%")
print(f"Trades: {performance['trade_count']}")
return {
'test_name': test_name,
'final_value': final_value,
'total_return': performance['total_return'] * 100,
'sharpe_ratio': performance['sharperatio'],
'max_drawdown': performance['max_drawdown'] * 100,
'annual_return': performance['annual_return'] * 100,
'annual_volatility': performance['annual_volatility'] * 100,
'trade_count': performance['trade_count']
}
def run_parameter_sensitivity_test(data_feed, strategy_class, base_params, test_param, test_values):
"""Test sensitivity to parameter changes"""
= []
results
for value in test_values:
= base_params.copy()
params = value
params[test_param]
= f"{test_param}={value}"
test_name = run_backtest(data_feed, strategy_class, test_name, **params)
result
results.append(result)
return results
def plot_stress_test_results(results):
"""Plot stress test comparison"""
= [r['test_name'] for r in results]
test_names = [r['total_return'] for r in results]
returns = [r['sharpe_ratio'] for r in results]
sharpe_ratios = [r['max_drawdown'] for r in results]
max_drawdowns
= plt.subplots(1, 3, figsize=(18, 6))
fig, (ax1, ax2, ax3)
# Returns
= ['green' if r > 0 else 'red' for r in returns]
colors range(len(test_names)), returns, color=colors)
ax1.bar('Total Returns (%)')
ax1.set_title('Return (%)')
ax1.set_ylabel(range(len(test_names)))
ax1.set_xticks(=45, ha='right')
ax1.set_xticklabels(test_names, rotationTrue, alpha=0.3)
ax1.grid(
# Sharpe Ratios
= ['green' if s > 0 else 'red' for s in sharpe_ratios]
colors range(len(test_names)), sharpe_ratios, color=colors)
ax2.bar('Sharpe Ratios')
ax2.set_title('Sharpe Ratio')
ax2.set_ylabel(range(len(test_names)))
ax2.set_xticks(=45, ha='right')
ax2.set_xticklabels(test_names, rotationTrue, alpha=0.3)
ax2.grid(=0, color='black', linestyle='--', alpha=0.5)
ax2.axhline(y
# Max Drawdowns
range(len(test_names)), max_drawdowns, color='orange')
ax3.bar('Maximum Drawdowns (%)')
ax3.set_title('Drawdown (%)')
ax3.set_ylabel(range(len(test_names)))
ax3.set_xticks(=45, ha='right')
ax3.set_xticklabels(test_names, rotationTrue, alpha=0.3)
ax3.grid(
plt.tight_layout()
plt.show()
def main():
"""Main stress testing workflow"""
print("=" * 70)
print("STRESS TESTING AND SCENARIO ANALYSIS DEMO")
print("=" * 70)
# Download data
= ['SPY', 'GLD', 'TLT', 'VTI']
tickers = '2020-01-01'
start_date = '2024-01-01'
end_date
print("Downloading market data...")
= download_data(tickers, start_date, end_date)
data_feeds, raw_data
if len(data_feeds) < 2:
print("Not enough data. Exiting.")
return
# Results storage
= []
all_results
# 1. BASELINE BACKTEST
print("\n" + "="*50)
print("1. BASELINE PERFORMANCE")
print("="*50)
# Single asset baseline
= run_backtest(
baseline_single 'SPY'], TrendFollowingStrategy,
data_feeds["Baseline (SPY Only)", period=50, stake=1000
)
all_results.append(baseline_single)
# Multi-asset baseline
= run_backtest(
baseline_multi
data_feeds, DiversifiedTrendStrategy,"Baseline (Multi-Asset)", period=50, stake_per_asset=2500
)
all_results.append(baseline_multi)
# 2. VOLATILITY SHOCK TEST
print("\n" + "="*50)
print("2. VOLATILITY SHOCK TESTS")
print("="*50)
# Create volatility shocked data
= apply_volatility_shock(raw_data['SPY'], multiplier=2.0)
shocked_spy = bt.feeds.PandasData(dataname=shocked_spy)
shocked_data_feed
= run_backtest(
vol_shock_result
shocked_data_feed, TrendFollowingStrategy,"Volatility Shock (2x)", period=50, stake=1000
)
all_results.append(vol_shock_result)
# 3. CORRELATION BREAKDOWN TEST
print("\n" + "="*50)
print("3. CORRELATION BREAKDOWN TEST")
print("="*50)
# Create correlation shocked data
= apply_correlation_shock(raw_data, target_correlation=0.95)
corr_shocked_data = {}
corr_shocked_feeds for ticker, df in corr_shocked_data.items():
= bt.feeds.PandasData(dataname=df)
corr_shocked_feeds[ticker]
= run_backtest(
corr_shock_result
corr_shocked_feeds, DiversifiedTrendStrategy,"Correlation Shock (0.95)", period=50, stake_per_asset=2500
)
all_results.append(corr_shock_result)
# 4. HIGH COST ENVIRONMENT TEST
print("\n" + "="*50)
print("4. HIGH COST ENVIRONMENT TEST")
print("="*50)
= run_backtest(
high_cost_result 'SPY'], TrendFollowingStrategy,
data_feeds["High Costs (1% commission)", high_costs=True, period=50, stake=1000
)
all_results.append(high_cost_result)
# 5. FLASH CRASH SCENARIO
print("\n" + "="*50)
print("5. FLASH CRASH SCENARIO")
print("="*50)
# Create flash crash scenario
= create_flash_crash_scenario(
crash_spy 'SPY'], crash_day_index=200,
raw_data[=-0.35, recovery_days=10
crash_magnitude
)= bt.feeds.PandasData(dataname=crash_spy)
crash_data_feed
= run_backtest(
crash_result
crash_data_feed, TrendFollowingStrategy,"Flash Crash (-35%)", period=50, stake=1000
)
all_results.append(crash_result)
# 6. PARAMETER SENSITIVITY TEST
print("\n" + "="*50)
print("6. PARAMETER SENSITIVITY TEST")
print("="*50)
# Test different SMA periods
= run_parameter_sensitivity_test(
period_test_results 'SPY'], TrendFollowingStrategy,
data_feeds['stake': 1000}, 'period', [20, 35, 50, 75, 100]
{
)
all_results.extend(period_test_results)
# 7. HISTORICAL CRISIS SCENARIOS
print("\n" + "="*50)
print("7. HISTORICAL CRISIS SCENARIOS")
print("="*50)
# COVID Crash period
try:
= yf.download('SPY', start='2020-02-01', end='2020-05-01', auto_adjust=False).droplevel(1, 1)
covid_data = 'datetime'
covid_data.index.name = bt.feeds.PandasData(dataname=covid_data)
covid_feed
= run_backtest(
covid_result
covid_feed, TrendFollowingStrategy,"COVID Crisis (Feb-May 2020)", period=20, stake=1000 # Shorter period for crisis
)
all_results.append(covid_result)except:
print("Could not download COVID crisis data")
# 8. RESULTS ANALYSIS
print("\n" + "="*70)
print("STRESS TEST RESULTS SUMMARY")
print("="*70)
# Create summary table
print(f"{'Test Name':<30} {'Return (%)':<12} {'Sharpe':<8} {'Max DD (%)':<12} {'Trades':<8}")
print("-" * 70)
for result in all_results:
print(f"{result['test_name']:<30} {result['total_return']:<12.2f} "
f"{result['sharpe_ratio']:<8.3f} {result['max_drawdown']:<12.2f} "
f"{result['trade_count']:<8}")
# Plot results
print("\nGenerating stress test comparison charts...")
plot_stress_test_results(all_results)
# 9. ROBUSTNESS ANALYSIS
print("\n" + "="*70)
print("ROBUSTNESS ANALYSIS")
print("="*70)
= baseline_single['total_return']
baseline_return = baseline_single['sharpe_ratio']
baseline_sharpe = baseline_single['max_drawdown']
baseline_dd
print(f"Baseline Performance: {baseline_return:.2f}% return, {baseline_sharpe:.3f} Sharpe, {baseline_dd:.2f}% max DD")
print()
# Analyze stress test impacts
= [r for r in all_results if 'Shock' in r['test_name'] or 'Flash Crash' in r['test_name'] or 'High Costs' in r['test_name']]
stress_tests
for test in stress_tests:
= test['total_return'] - baseline_return
return_impact = test['sharpe_ratio'] - baseline_sharpe
sharpe_impact = test['max_drawdown'] - baseline_dd
dd_impact
print(f"{test['test_name']}:")
print(f" Return Impact: {return_impact:+.2f}% ({return_impact/baseline_return*100:+.1f}%)")
print(f" Sharpe Impact: {sharpe_impact:+.3f} ({sharpe_impact/abs(baseline_sharpe)*100 if baseline_sharpe != 0 else 0:+.1f}%)")
print(f" Max DD Impact: {dd_impact:+.2f}% ({dd_impact/baseline_dd*100:+.1f}%)")
print()
print("KEY INSIGHTS:")
print("• Multi-asset diversification provides some protection against individual asset shocks")
print("• Volatility shocks can significantly impact trend-following strategies")
print("• High transaction costs erode performance substantially")
print("• Parameter sensitivity reveals optimization robustness")
print("• Flash crashes test stop-loss and risk management effectiveness")
if __name__ == "__main__":
main()
The main
function in the code outlines a complete
workflow for evaluating strategy robustness.
First, you need to establish a baseline for your strategy’s performance under normal market conditions. The code runs two baseline tests:
A single-asset test on
SPY
.
A multi-asset test on a diversified portfolio of
SPY
, GLD
, TLT
, and
VTI
.
This baseline gives you the metrics (e.g., Sharpe=0.55
,
Max DD=15%
) you are trying to protect during the stress
tests.
These tests deliberately challenge a single variable to see how sensitive your strategy is to specific shocks.
Volatility Shock: The code uses
apply_volatility_shock
to double the market’s historical
volatility. A trend-following strategy, which often relies on smooth
trends, would likely suffer significant degradation in this test due to
increased “whipsaws.”
Correlation Breakdown: The
apply_correlation_shock
function forces the diversified
assets (SPY
, GLD
, TLT
) to become
highly correlated. A diversified strategy that performs well in the
baseline should see its performance metrics collapse in this scenario,
as the very benefit of diversification has been removed.
High Cost Environment: By setting a high
commission using cerebro.broker.setcommission
, the code
tests how a strategy’s profits are affected by transaction costs. This
is crucial for strategies with high turnover.
Parameter Sensitivity: The
run_parameter_sensitivity_test
function is a form of stress
test that helps you determine if your strategy is overfit. It runs the
backtest with a range of different parameters to see if performance
falls off a cliff when moved slightly away from the optimal
value.
These tests use historical or hypothetical events to challenge the entire strategy at once.
Historical Crisis Scenario: The code backtests the strategy on a real-world market crisis—the COVID-19 crash period from February to May 2020. This is an excellent way to see how your strategy would have actually performed in a severe, fast-moving bear market.
Hypothetical Flash Crash: The
create_flash_crash_scenario
function is a great example of
a forward-looking test. It simulates a sudden, severe market drop that
may not be in the historical data, providing a direct test of a
strategy’s stop-loss and risk management effectiveness.
======================================================================
STRESS TEST RESULTS SUMMARY
======================================================================
Test Name Return (%) Sharpe Max DD (%) Trades
----------------------------------------------------------------------
Baseline (SPY Only) 1.88 -0.500 2.12 32
Baseline (Multi-Asset) 8.11 0.172 16.01 136
Volatility Shock (2x) 4.22 0.028 4.04 32
Correlation Shock (0.95) 39.12 0.705 16.75 122
High Costs (1% commission) -2.94 -1.554 5.42 32
Flash Crash (-35%) 1.81 -0.242 3.23 33
period=20 0.83 -0.726 2.29 47
period=35 1.31 -0.627 2.16 40
period=50 1.88 -0.500 2.12 32
period=75 2.67 -0.316 1.45 21
period=100 1.73 -0.673 1.96 16
COVID Crisis (Feb-May 2020) 0.48 0.674 0.41 0
Stress testing and scenario analysis are indispensable tools for professional quantitative risk management. While historical backtesting provides a baseline, it is insufficient for capturing the full spectrum of market risk. By systematically challenging your strategy with extreme but plausible conditions, you uncover hidden weaknesses, inform the design of hedges, and build more resilient systems.
No strategy is immune to tail events, but those prepared for them are far more likely to endure—and outperform—in the long run.